Massive Stars: Good Targets for Planet Hunts, Bad Targets for SETI

January 6, 2010, Harvard-Smithsonian Center for Astrophysics
This artist's conception shows a Jupiter-sized planet forming from a disk of dust and gas surrounding a young, massive star. The planet's gravity has cleared a gap in the disk. Of more than 500 stars examined in the W5 star-forming region, 15 show evidence of central clearing that may be due to forming planets. Credit: David A. Aguilar, CfA

( -- Most searches for planets around other stars, also known as exoplanets, focus on Sun-like stars. Those searches have proven successful, turning up more than 400 alien worlds. However, Sun-like stars aren't the only potential homes for planets. New research by astronomers at the Harvard-Smithsonian Center for Astrophysics (CfA) and the National Optical Astronomy Observatory (NOAO) confirms that planet formation is a natural by-product of star formation, even around stars much heftier than the Sun.

"We see evidence of on fast forward," said Xavier Koenig of the CfA, who presented the research in a press conference today at the 215th meeting of the American Astronomical Society.

Koenig and his colleagues examined the star-forming region named W5, which lies about 6,500 light-years away in the constellation Cassiopeia. They employed NASA's and the ground-based Two Micron All-Sky Survey (2MASS) to look for infrared evidence of dusty planet-forming disks. They targeted over 500 type A and B stars, which are about two to 15 times as massive as the Sun. Sirius and Vega, not included in this study, are two type A stars easily visible to backyard skygazers.

The team found that about one-tenth of the stars examined appear to possess dusty disks. Of those, 15 showed signs of central clearing, which suggests that newborn Jupiter-sized planets are sucking up material.

"The gravity of a Jupiter-sized object could easily clear the inner disk out to a radius of 10 to 20 astronomical units, which is what we see," said Lori Allen of NOAO. (An is the average Earth-Sun distance of 93 million miles.)

Planet formation around A and B stars is a battle between opposing forces. On one hand, the stars' disks tend to be more massive and contain more of the raw materials to build planets. On the other hand, fierce stellar radiation and winds try to destroy the disks rapidly.

The stars in W5 are only about two to five million years old, yet most have already lost the raw materials needed to form planets. This indicates that, at least for type A and B stars, planets must form quickly or not at all.

The prospects for hypothetical alien life are disappointing. The habitable zone, or region where liquid water could exist on a rocky surface, is at a greater distance from the star for A and B stars than for sun-like stars due to their greater luminosity. However, that luminosity comes at the price of a short lifetime. A and B stars live for only about 10 - 500 million years before running out of fuel.

Life existed on Earth for 3.5 billion years in very simple forms, before the Cambrian explosion led to the diversity of life forms we see today. in W5 around these more massive stars wouldn't have that opportunity.

"These aren't good targets in the hunt for extraterrestrials," said Koenig, "but they give us a great new way to get a better understanding of planet formation."

Explore further: Planets Living on the Edge

Related Stories

Planets Living on the Edge

December 17, 2008

( -- Some stars have it tough when it comes to raising planets. A new image from NASA's Spitzer Space Telescope shows one unlucky lot of stars, born into a dangerous neighborhood. The stars themselves are safe, ...

Baby Jupiters must gain weight fast

January 5, 2009

The planet Jupiter gained weight in a hurry during its infancy. It had to, since the material from which it formed probably disappeared in just a few million years, according to a new study of planet formation around young ...

Making Jupiters

August 21, 2009

IC348 is a glowing nebula of young stars, hot gas, and cold dust seen in the direction of the constellation of Perseus. It is the nearest rich cluster of young stars to earth, being only about one thousand light-years away. ...

Planetary systems can form around binary stars

January 10, 2006

New theoretical work shows that gas-giant planet formation can occur around binary stars in much the same way that it occurs around single stars like the Sun. The work is presented today by Dr. Alan Boss of the Carnegie Institution’s ...

Recommended for you

NASA engineers dream big with small spacecraft

April 20, 2018

Many of NASA's most iconic spacecraft towered over the engineers who built them: think Voyagers 1 and 2, Cassini or Galileo—all large machines that could measure up to a school bus.

Unveiling the secrets of the Milky Way galaxy

April 20, 2018

A multinational team of astronomers involving the University of Adelaide has catalogued over 70 sources of very high energy gamma rays, including 16 previously undiscovered ones, in a survey of the Milky Way using gamma ray ...

Where is the universe's missing matter?

April 19, 2018

Astronomers using ESA's XMM-Newton space observatory have probed the gas-filled haloes around galaxies in a quest to find 'missing' matter thought to reside there, but have come up empty-handed – so where is it?


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.