Formation of the Gulf of Corinth rift, Greece

December 22, 2009, National Oceanography Centre, Southampton
This is the view to the west along the Gulf of Corinth active rift showing the bathymetry of the seafloor within the active offshore rift and a cross section beneath the seafloor interpreted from a seismic reflection profile. Red dashed lines on the seafloor and on the coast to the south are the major normal faults which control the region's morphology and the opening of the rift. Colored layers within the cross section represent layers of sediment deposited and deformed as the rift subsides. Credit: NOCS

A study of the structure and evolution of the Gulf of Corinth rift in central Greece will increase scientific understanding of rifted margin development and the tectonic mechanisms underlying seafloor spreading and deformation of the Earth's crust.

"The Gulf of Corinth rift is an ideal natural laboratory for studying early rift history," said Dr Lisa McNeill of the University of Southampton's School of Ocean and Earth Science (SOES) at the National Oceanography Centre, Southampton (NOCS): "The rift is less than five million years old and is relatively easy to interpret as its structure has not been significantly complicated by geological events over a long period of time. The rifting process is also the source of hazardous earthquakes in the region"

Using available marine and terrestrial data, including high-resolution seismic reflection profiles from a research cruise aboard the MV Vasilios in 2003, the researchers analysed fault evolution across the entire rift system, producing a fault framework for the rift and revealing patterns of basin subsidence through rift history. They also estimated when faults became active and the rates at which they slip.

"Our analysis shows how the system of faults associated with the Corinth rift has evolved over time, which can now be compared with other rifts worldwide and with computer models of rift development," said Dr Rebecca Bell, former SOES PhD student at the National Oceanography Centre, now working at GNS Science, New Zealand and lead author of the research.

The Corinth rift is about 100 kilometres long and 30 kilometers wide. It is under high strain, its north and south sides separating due to tectonic forces by up to ~15 milimetres per year.

The researchers find that the rift has undergone major changes in fault activity and the shape of the rift basin during its short history. The currently active Gulf of Corinth Basin is thought to have formed only 1-2 million years ago.

Before around 400,000 years ago, two separate areas of sediment deposition or basins (20-50 kilometres long) were created, controlled by north- and south-dipping faults. Since this time, these basins have coalesced into one (80 kilometres long) controlled by multiple connected faults.

The researchers conclude that isolated but nearby faults can persist for around a million years and form major basins before becoming linked deep below the Earth's surface: "Basin subsidence and the eventual transition to seafloor spreading are controlled by the development and interaction of fault systems established in the early stages of continental rifting."

Explore further: Beneath the surface

More information: Bell, R. E., McNeill, L. C., Bull, J. M. Henstock, T. J., Collier, R. E. L. & Leeder, M. R. Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Research 21, 824-855 (2009).

Related Stories

Beneath the surface

February 11, 2009

It was the geological collision between India and Asia millions of years ago that created one of the world's most distinctive places: The area around Lake Baikal in Siberia, which contains 20 per cent of the world's fresh ...

African desert rift confirmed as new ocean in the making

November 2, 2009

( -- In 2005, a gigantic, 35-mile-long rift broke open the desert ground in Ethiopia. At the time, some geologists believed the rift was the beginning of a new ocean as two parts of the African continent pulled ...

A glimpse at the Earth's crust deep below the Atlantic

November 12, 2009

Long-term variations in volcanism help explain the birth, evolution and death of striking geological features called oceanic core complexes on the ocean floor, says geologist Dr Bram Murton of the National Oceanography Centre, ...

MESSENGER discovers an unusual impact basin on Mercury

April 30, 2009

A previously unknown, large impact basin has been discovered by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during its second flyby of Mercury in October 2008. The impact basin, ...

Recommended for you

Death near the shoreline, not life on land

December 13, 2018

Our understanding of when the very first animals started living on land is helped by identifying trace fossils—the tracks and trails left by ancient animals—in sedimentary rocks that were deposited on the continents.

The long dry: global water supplies are shrinking

December 13, 2018

A global study has found a paradox: our water supplies are shrinking at the same time as climate change is generating more intense rain. And the culprit is the drying of soils, say researchers, pointing to a world where drought-like ...

New climate model to be built from the ground up

December 13, 2018

Facing the certainty of a changing climate coupled with the uncertainty that remains in predictions of how it will change, scientists and engineers from across the country are teaming up to build a new type of climate model ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.