Unexpected Hydrides Become Stable Metals at Pressure Near One Quarter Required to Metalize Pure Hydrogen Alone

October 12, 2009
Predicted stable structures of metallic LiH2 (left) and LiH6 (right). Green - lithium atoms, white and pink - hydrogen atoms.

(PhysOrg.com) -- From detailed assessments of electronic structure, researchers at the University at Buffalo, Cornell University, Stony Brook University and Moscow State University discovered that unexpected hydrides violating standard valence rules, such as LiH6 and LiH8, become stable metals at a pressure approximately one quarter of that required to metalize pure hydrogen itself; findings that were published in an October 5, 2009 early edition of the Proceedings of the National Academy of Sciences.

The paper, entitled "A little bit of lithium does a lot for hydrogen," presents the first prediction of stable LiHn hydrides (LiH2, LiH6, LiH8). These hypothetical materials demonstrate that nontraditional stoichiometries can considerably expand the view of chemical bonding already under moderate pressure.

, believed to be stable at high pressures, is theorized to be a superconductor at record high temperatures of at least a few hundred Kelvin (room temperature or higher). Due to its high (100%) hydrogen content and high density it is the ultimate material - if it can be synthesized in large quantities and subsequently brought to ambient conditions in the same metallic form.

For decades, researchers at the top research institutions around the world have predicted exotic properties for metallic hydrogen, but no credible reports of experimental synthesis of solid metallic hydrogen ever appeared because of two primary obstacles. First, metallization of hydrogen requires pressures of about four million atmospheres, which was out of reach of static compression techniques. Extreme pressures, even if they could be reached, imply that only tiny amounts of the material can be prepared, which would be of little practical use. Second, the recovery of this high pressure material to ambient pressure will be almost certainly problematic.

Work of Eva Zurek, assistant professor at the University at Buffalo, her former Cornell University colleagues Roald Hoffmann and Neil W. Ashcroft, in collaboration with Professor Artem R. Oganov and his colleague Andiry O. Lyakhov at Stony Brook University, offers surprising new optimism.

"Synthesis of metallic hydrogen has long been a dream of physicists. A dream that is now one big step closer, thanks to this theoretical work," says Professor Oganov.

"There are fundamental reasons to be excited about this form of metallic hydrogen. Light nucleus of hydrogen behaves like a quantum particle-wave, making it possible that there will be altogether new states of matter, simultaneously superconducting and superfluid."

To uncover these findings, Zurek tapped the powerful computational methods developed by Oganov and Lyakhov - methods which allow one to predict the structure and composition of new stable compounds before they are synthesized in the lab. What Zurek found was that, while LiH is a simple and well-known material at normal conditions, very unusual chemistry appears at pressures above one million atmospheres.
Unexpected hydrogen-rich metallic compounds, such as LiH2, LiH6 and LiH8 become stable. Many of their properties would be similar to those of the long-sought metallic hydrogen, but conditions of synthesis can be readily achieved in the lab. The study also shows a way to prepare metallic almost-hydrogen for possible practical use.

"Finding elements that would form such compounds at still lower pressures is now the most realistic solution to the metallic hydrogen problem and opens the door to a world of new chemistry, where little can be anticipated with traditional chemical concepts - no one would have expected LiH8, LiH6 or LiH2 to be stable compounds," says Oganov. "It is possible that new important chemical rules will be found along this exploratory path. And who knows, maybe one day this will lead us to room-temperature superconductivity and new twists in the search for storage materials."

More information: PNAS article link: www.pnas.org/content/early/200 … 262106.full.pdf+html

Provided by Stony Brook University (news : web)

Explore further: For Future Superconductors, a Little Bit of Lithium May Do Hydrogen a Lot of Good

Related Stories

On the path to metallic hydrogen

August 3, 2009

Hydrogen, the most common element in the universe, is normally an insulating gas, but at high pressures it may turn into a superconductor. Now, scientists at the Carnegie Institution in Washington D.C., US, have discovered ...

Metal Becomes Transparent Under High Pressure

March 12, 2009

An international team of scientists have discovered a transparent form of the element sodium (Na). The team, led by Artem Oganov, Professor of Theoretical Crystallography at Stony Brook University, and Yanming Ma, the lead ...

Potassium leads to better hydrogen-storage materials

April 15, 2009

An international research team, including Professor Rajeev Ahuja's research group at Uppsala University, has shown that small additions of potassium drastically improve the hydrogen-storage properties of certain types of ...

Recommended for you

Elastic Leidenfrost effect enables soft engines

July 24, 2017

Water droplets float in a hot pan because of the so-called Leidenfrost effect. Now, physicists have discovered a variation: the elastic Leidenfrost effect. It explains why hydrogel balls jump around on a hot plate making ...

Scientists observe gravitational anomaly on Earth

July 21, 2017

Modern physics has accustomed us to strange and counterintuitive notions of reality—especially quantum physics which is famous for leaving physical objects in strange states of superposition. For example, Schrödinger's ...

Vortex photons from electrons in circular motion

July 21, 2017

Researchers at IMS and their coworkers have shown theoretically and experimentally that a high energy electron in circular/spiral motion radiates vortex photons from the radio wavelength to gamma rays. This greatly broadens ...

New model for the origin of grid cells

July 21, 2017

Ludwig Maximilian University of Munich neurobiologists present a new theory for the origin of the grid cells required for spatial orientation in the mammalian brain, which assigns a vital role to the timing of trains of signals ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 12, 2009
Room temperature superconductivity was published already before years.

Oct 12, 2009
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.