Novel forms of the elements predicted by simulation

June 22, 2006

The Periodic Table of elements is the basis of chemistry. Yet, it is known that the behaviour of the elements – and their chemical properties – change significantly under pressure.

Normally inert platinum and xenon become highly reactive, potassium becomes a transition metal, while hydrogen, oxygen and sulphur become superconductors. High pressure is a route to prepare novel materials with exotic structures and properties, and such materials greatly extend our understanding of the chemical bonding between the atoms. However, high-pressure experiments are very difficult and often do not permit the determination of structure.

Recently, Artem R. Oganov and Colin W. Glass from the Laboratory of Crystallo¬graphy of ETH Zurich developed a novel simulation methodology based on the laws of quantum mechanics and allowing one to predict the structure of a material at any pressure-temperature conditions given just the chemical formula.

Now they apply it to a number of chemically interesting systems including a series of chemical elements under pressure. This study – presented in the Journal of Chemical Physics – resolves several debates that continued over the last few decades and indicate a class of potentially technologically useful carbon-based materials.

Hydrogen – complex behaviour of the simplest element

Hydrogen is the most abundant element in the Universe. In the Periodic Table its position is ambiguous – it can be placed either with alkali metals or with non-metallic halogens. Metallization of hydrogen under pressure is invoked to explain the magnetic fields of the giant planets Jupiter and Saturn.

It is believed that metallic hydrogen should be a superconductor up to record high temperatures (perhaps 300C). However, the structure of hydrogen at very high pressure is unknown. It is commonly believed that it should transform into a molecular metal at around 3.5 Mbar, and then turn into a non-molecular metal at ~5 Mbar. Now, ETH researchers Oganov and Glass predict that the molecular state will survive at least up to 6 Mbar. For comparison: the much stronger nitrogen molecule is destroyed at much lower pressures of ~0.5 Mbar. This puts hydrogen much closer to halogens than to alkali metals.

Unique structures of red and black oxygen clarified

It is known , that dramatic changes in the physical state of oxygen occur under pressure – from light- blue magnetic material it turns deep-red and non-magnetic. Then, at even higher pressures, it transforms into a black superconducting substance. Using their new simulation method, Oganov and Glass could clarify the unique structures of the red and the black oxygen.

Oxygen retains the O2 molecules, but weak bonds develop also between the molecules, producing exotic chains of molecules and other molecular aggregates (e.g. pairs of molecules). Increasing intermolecular interactions under pressure are the key to understanding the change of the colour and electrical conductivity.

Towards new materials

Carbon is notorious for the variety of chemical bonds it can adopt. This chemical flexibility makes carbon very suitable for its role as the element of life. Different structures of carbon e.g. graphite, diamond, or fullerenes possess remarkably different properties. Using their simulation technique, ETH researchers have predicted several new forms of carbon at atmospheric pressure.

Two of these are especially interesting in that they contain elements of both the graphite and the diamond structures and can be expected to possess unique hardness and electrical properties. Like fullerenes, these forms would require special conditions of synthesis – but once prepared, could become technologically important materials.

Citation: Oganov A.R., Glass C.W. (2006). Crystal structure prediction using evolutionary techniques: principles and applications. J. Chem. Phys. 124, issue 24.

Source: ETH Zuerich

Explore further: Health Check: What causes bloating and gassiness?

Related Stories

Making ammonia 'greener'

January 11, 2019

Ammonia, a compound first synthesized about a century ago, has dozens of modern uses and has become essential in making the fertilizer that now sustains most of our global food production.

Illuminating how nitrogenase makes ammonia

January 7, 2019

A team of researchers led by PNNL computational scientist Simone Raugei have revealed new insights about how this complex enzyme does its job, finding that the seemingly wasteful formation of hydrogen has an essential purpose. ...

How did Uranus end up on its side? We've been finding out

January 23, 2019

Uranus is arguably the most mysterious planet in the solar system – we know very little about it. So far, we have only visited the planet once, with the Voyager 2 spacecraft back in 1986. The most obvious odd thing about ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.