Potassium leads to better hydrogen-storage materials

April 15, 2009,

An international research team, including Professor Rajeev Ahuja's research group at Uppsala University, has shown that small additions of potassium drastically improve the hydrogen-storage properties of certain types of hydrogen compounds. The findings are published in the Web edition of Angewandte Chemie International Edition.

"Our energy-consuming world has become more and more dependent on new methods of storing and converting energy for new, environmentally friendly means of transportation. Hydrogen, which can be produced with few or no harmful emissions, has been suggested as a long-term solution to future energy needs," says Rajeev Ahuja, a professor at Uppsala University, who adds:

"The interest in research geared to developing a technology for safe and efficient storage of hydrogen has increased considerably."

His research team is now demonstrating, in collaboration with Professor Ping Chen's research group at the National University of Singapore, that small additions of potassium hydride dramatically improve the hydrogen-storage properties of a mixture of Mg(NH2)2 and 2LiH.

The new findings are based on both experimental and theoretical data. The extensive calculations in the study were performed with UPPMAX (Uppsala University Multidisciplinary Center for Advanced Computational Science).

"The results clearly show that small additions of potassium hydride dramatically lower the temperature for hydrogen absorption. Based on our theoretical analysis, we can provide a detailed explanation of the atomic mechanisms behind the effect," says Rajeev Ahuja, who adds that this is also of interest for other hydrogen storage systems.

For example, automakers are interested in using solid hydrogen-storage materials as a new type of energy storage in cars. However, the functional properties of these materials require a mixture of different hydrides and the use of catalytic converters.

Source: Uppsala University (news : web)

Explore further: Revealing new applications for carbon nanomaterials in hydrogen storage

Related Stories

A promising step towards more effective hydrogen storage

June 16, 2008

An international research team led by Swedish Professor Rajeev Ahuja, Uppsala University, has demonstrated an atomistic mechanism of hydrogen release in magnesium nanoparticles – a potential hydrogen storage material. The ...

Hydrogen Storage for Cars?

December 21, 2007

Hydrogen is the fuel of the future. Unfortunately, one problem remains: Hydrogen is a gas and cannot easily be pumped into a tank like gasoline. Storage in the form of solid hydrides, chemical compounds of hydrogen and a ...

Hydrogen storage in nanoparticles works

March 31, 2008

Dutch chemist Kees Baldé has demonstrated that hydrogen can be efficiently stored in nanoparticles. This allows hydrogen storage to be more easily used in mobile applications. Baldé discovered that 30 nanometre particles ...

Recommended for you

Detecting metabolites at close range

June 22, 2018

A novel concept for a biosensor of the metabolite lactate combines an electron transporting polymer with lactate oxidase, which is the enzyme that specifically catalyzes the oxidation of lactate. Lactate is associated with ...

CryoEM study captures opioid signaling in the act

June 22, 2018

Opioid drugs like morphine and fentanyl are a mainstay of modern pain medicine. But they also cause constipation, are highly addictive, and can lead to fatal respiratory failure if taken at too high a dose. Scientists have ...

Researchers achieve unprecedented control of polymer grids

June 21, 2018

Synthetic polymers are ubiquitous—nylon, polyester, Teflon and epoxy, to name just a few—and these polymers are all long, linear structures that tangle into imprecise structures. Chemists have long dreamed of making polymers ...

Template to create superatoms could make for better batteries

June 21, 2018

Virginia Commonwealth University researchers have discovered a novel strategy for creating superatoms—combinations of atoms that can mimic the properties of more than one group of elements of the periodic table. These superatoms ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.