Scientists develop method for comprehensive proteome analysis

April 8, 2009

Investigators at Burnham Institute for Medical Research (Burnham) have deciphered a large percentage of the total protein complement (proteome) in Schizosaccharomyces pombe (S. pombe) fission yeast.

Laurence Brill, Khatereh Motamedchaboki, Ph.D. and lead investigator Dieter Wolf, Ph.D., developed the novel method, used to identify 4,600 proteins in the organism, using an array of sophisticated techniques. The research was published online on March 9 in the journal Methods.

"Analysis of the proteome of an organism tells us so much more than simple DNA sequence analysis," said Dr. Wolf. "Proteome analysis gives us a snapshot of what proteins are being expressed in the cell at any given point in time. This can tell us how expression changes in response to certain stimuli and in disease states, which may help identify new biomarkers for diseases. We are now applying the methodology to protein profiling of human in collaboration with Burnham's stem cell program director, Evan Snyder."

The method developed by Burnham scientists involved digestion of the proteins into smaller , then separation of the peptides based on electrostatic charge using strong anionic exchange chromatography. The peptides were further separated by molecular weight using high pressure liquid chromatography. Each of the individual peptides was detected and identified using mass spectrometry and database analysis. DNA analysis of the yeast's genome predicts 5027 proteins. The team identified 4,600 proteins, which is not quite the entire proteome. The remaining 400 are only expressed during S. pombe's mating state.

S. pombe is often used as a model organism to study DNA damage response and repair, cell division, stress responses and other aspects of cellular biology.

Source: Burnham Institute

Explore further: Researchers illuminate mechanisms that regulate DNA damage control and replication

Related Stories

Yale scientists map cell signaling network

November 30, 2005

Yale University scientists have mapped, for the first time, the proteins and kinase signaling network that control how cells of higher organisms operate.

Plague proteome reveals proteins linked to infection

November 22, 2006

Recreating growth conditions in flea carriers and mammal hosts, Pacific Northwest National Laboratory scientists have uncovered 176 proteins and likely proteins in the plague-bacterium Yersinia pestis whose numbers rise ...

New NIST reference material for peptide analysis

May 25, 2007

The National Institute of Standards and Technology (NIST) has issued its first-ever reference material designed to improve the performance and reliability of experiments to measure the masses and concentrations of peptides ...

Stem cell research uncovers mechanism for type 2 diabetes

February 12, 2009

Taking clues from their stem cell research, investigators at the University of California San Diego (UC San Diego) and Burnham Institute for Medical Research (Burnham) have discovered that a signaling pathway involved in ...

Recommended for you

Even wild mammals have regional dialects

December 13, 2017

Researchers from Cardiff University's Otter Project have discovered that genetically distinct populations of wild otters from across the UK have their own regional odours for communicating vital information to each other. ...

Defence at almost any price

December 13, 2017

Even bacteria have enemies – in water, for example, single-celled ciliates preferably feed on microbes. The microbes protect themselves against predators by employing a variety of tricks, which the ciliates, in turn, attempt ...

Mosquito sex protein could provide key to controlling disease

December 13, 2017

If you thought the sex lives of humans were complicated, consider the case of the female Aedes aegypti mosquito, bringer of Zika, dengue, and yellow fever: She mates but once, in seconds and on the wing, with one lucky male; ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.