New imaging method lets scientists 'see' cell molecules more clearly

January 19, 2009

Scientists have always wanted to take a closer look at biological systems and materials. From the magnifying glass to the electron microscope, they have developed ever-increasingly sophisticated imaging devices.

Now, Niels de Jonge, Ph.D., and colleagues at Vanderbilt University and Oak Ridge National Laboratory (ORNL), add a new tool to the biology-watcher's box. In the online early edition of the Proceedings of the National Academy of Sciences, they describe a technique for imaging whole cells in liquid with a scanning transmission electron microscope (STEM).

"Electron microscopy is the most important tool for imaging objects at the nano-scale - the size of molecules and objects in cells," said de Jonge, who is an assistant professor of Molecular Biology & Biophysics at Vanderbilt and a staff scientist at ORNL. But electron microscopy requires a high vacuum, which has prevented imaging of samples in liquid, such as biological cells.

The new technique - liquid STEM - uses a micro-fluidic device with electron transparent windows to enable the imaging of cells in liquid. In the PNAS article, the investigators demonstrate imaging of individual molecules in a cell, with significantly improved resolution (the fineness of detail in the image) and speed compared to existing imaging methods.

"Liquid STEM has the potential to become a versatile tool for imaging cellular processes on the nanometer scale," de Jonge said. "It will potentially be of great relevance for the development of molecular probes and for the understanding of the interaction of viruses with cells."

The technique will also become a resource for energy science, as researchers use it to visualize processes that occur at liquid: solid interfaces, for example in lithium ion batteries, fuel cells, or catalytic reactions.

"Our key innovation with respect to other techniques for imaging in liquid is the combination of a large volume that will accommodate whole cells, a resolution of a few nanometers, and fast imaging of a few seconds per image," de Jonge said.

Source: Vanderbilt University

Explore further: Our living planet shapes the search for life beyond Earth

Related Stories

Muscles out of the spray can

November 7, 2017

An artificial heart would be an absolute lifesaver for people with cardiac failure. However, to recreate the complex organ in the laboratory, one would first need to work out how to grow multi-layered, living tissues. Researchers ...

Exit through the lymphatic system

November 10, 2017

Our brain swims. It is fully immersed in an aqueous liquid known as cerebrospinal fluid. Every day, the human body produces about half a litre of new cerebrospinal fluid in the cerebral ventricles; this liquid originates ...

Recommended for you

Recurring martian streaks: flowing sand, not water?

November 20, 2017

Dark features on Mars previously considered evidence for subsurface flowing of water are interpreted by new research as granular flows, where grains of sand and dust slip downhill to make dark streaks, rather than the ground ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jan 19, 2009
A very sensitive digital voltmeter is needed to measure the total "free electron load" within the living cell. We could then predict the onset of accelerated mitosis, (cancer), in time to drain off the energy before it goes malignant!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.