New study on properties of carbon nanotubes, water could have wide-ranging implications

October 2, 2008

A fresh discovery about the way water behaves inside carbon nanotubes could have implications in fields ranging from the function of ultra-tiny high-tech devices to scientists' understanding of biological processes, according to researchers from the University of North Carolina at Chapel Hill.

The findings, published in the Oct. 3, 2008, issue of the journal Science, relate to a property of so-called "nano-confined" water – specifically, whether hollow carbon nanotubes take in the liquid easily or reluctantly, depending on their temperature.

As well as shedding light on the characteristics of human-made nanomaterials, researchers note that such properties are relevant to the workings of biological structures and phenomena which also function at nano-scales.

The team of scientists, led by Yue Wu, Ph.D., professor of physics in the UNC College of Arts and Sciences, examined carbon nanotubes measuring just 1.4 nanometers in diameter (one nanometer is a billionth of a meter). The seamless cylinders were made from rolled up graphene sheets, the exfoliated layer of graphite.

"Normally, graphene is hydrophobic, or 'water hating' – it repels water in the same way that drops of dew will roll off a lotus leaf," said Wu. "But we found that in the extremely limited space inside these tubes, the structure of water changes, and that it's possible to change the relationship between the graphene and the liquid to hydrophilic or 'water-liking'."

The UNC team did this by making the tubes colder. Using nuclear magnetic resonance – similar to the technology used in advanced medical MRI scanners – they found that at about room temperature (22 degrees centigrade), the interiors of carbon nanotubes take in water only reluctantly.

However, when the tubes were cooled to 8 degrees, water easily went inside. Wu said this shows that it is possible for water in nano-confined regions – either human-made or natural – to take on different structures and properties depending on the size of the confined region and the temperature.

In terms of potential practical applications, Wu suggested further research along these lines could impact the design of high-tech devices (for example, nano-fluidic chips that act as microscopic laboratories), microporous sorbent materials such as activated carbon used in water filters, gas masks, and permeable membranes.

"It may be that by exploiting this hydrophobic-hydrophilic transition, it might be possible to use changes in temperature as a kind of 'on-off' switch, changing the stickiness of water through nano-channels, and controlling fluid flow."

Wu also noted that this research relates to scientists' understanding of the workings of many building blocks of life (such as proteins, whose structures also have nano-confined hydrophobic regions) and how their interaction with water plays a role in how they function. For example, such interactions play an important role in the process known as "protein folding," which determines a protein's eventual shape and characteristics. Misfolded proteins are believed to be a cause of several neurodegenerative and other diseases.

"We don't fully understand the mechanisms behind protein unfolding upon cooling," Wu said. "Could this kind of cooling-induced hydrophobic-hydrophilic transition play a role? We don't know but it's worth investigating."

Source: University of North Carolina at Chapel Hill

Explore further: Using sunlight to the max

Related Stories

Using sunlight to the max

June 19, 2017

Materials called transition-metal carbides have remarkable properties that open new possibilities in water desalination and wastewater treatment. A KAUST team has found compounds of transition metals and carbon, known as ...

Squeezing every drop of fresh water from waste brine

May 29, 2017

Engineers at the University of California, Riverside have developed a new way to recover almost 100 percent of the water from highly concentrated salt solutions. The system will alleviate water shortages in arid regions and ...

Study finds support for new forms of liquid water

April 4, 2017

Putting water in a (really) tight spot and cranking up the pressure could reveal new sides of its already mercurial personality, says a new international study co-authored by chemists at the University of Nebraska-Lincoln.

Inkjet-printed batteries bring us closer to smart objects

May 2, 2017

The race is on to develop everyday objects that have network connectivity and can send and receive data: the so-called 'Internet of Things'. But this requires flexible, lightweight and thin rechargeable power sources. Currently ...

Recommended for you

Scientists produce dialysis membrane made from graphene

June 29, 2017

Dialysis, in the most general sense, is the process by which molecules filter out of one solution, by diffusing through a membrane, into a more dilute solution. Outside of hemodialysis, which removes waste from blood, scientists ...

Nanostructures taste the rainbow

June 28, 2017

Engineers at Caltech have for the first time developed a light detector that combines two disparate technologies—nanophotonics, which manipulates light at the nanoscale, and thermoelectrics, which translates temperature ...

Researchers create very small sensor using 'white graphene'

June 28, 2017

Researchers from TU Delft in The Netherlands, in collaboration with a team at the University of Cambridge (U.K.), have found a way to create and clean tiny mechanical sensors in a scalable manner. They created these sensors ...

A levitated nanosphere as an ultra-sensitive sensor

June 28, 2017

Sensitive sensors must be isolated from their environment as much as possible to avoid disturbances. Scientists at ETH Zurich have now demonstrated how to remove from and add elementary charges to a nanosphere that can be ...

Injectable plant-based nanoparticles delay tumor progression

June 28, 2017

Researchers from Case Western Reserve University School of Medicine in collaboration with researchers from Dartmouth Geisel School of Medicine and RWTH Aachen University (Germany) have adapted virus particles—that normally ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.