Study suggests air quality regulations miss key pollutants

September 24, 2008

(PhysOrg.com) -- A new study led by the University of Colorado at Boulder reveals that air quality regulations may not effectively target a large source of fine, organic particle pollutants that contribute to hazy skies and poor air quality over the Los Angeles region.

According to the study, a much smaller percentage of organic haze than was previously thought is directly emitted by vehicles and industrial processes. Instead, 75 percent of fine, organic particle pollutants form when reactive gases called VOCs, or volatile organic compounds, are oxidized and condense onto existing particles in the air.

"Air quality regulations today effectively target most sources of 'primary,' or directly emitted particles," said lead author Ken Docherty, a researcher with the university's Cooperative Institute for Research in Environmental Sciences. "Yet our study indicates that the 'secondary,' or chemically formed particles contribute more significantly to poor air quality, even in very polluted urban regions.

"Our study suggests that regulations need to focus much more attention on the gases -- such as gasoline vapors -- that form secondary organic particles and create visible haze," he said. Other examples of VOCs include vapors from paints, varnishes, cleaning supplies, automotive products and dry-cleaned clothing.

The study will be published in the journal Environmental Science and Technology and was posted online Sept. 23.

According to California state regulatory agencies, motor vehicles and household products are both significant sources of VOCs in the Los Angeles region.

"Although current regulations do target many sources of VOCs, these regulations will need to further reduce VOC emissions and perhaps target still unknown sources to effectively reduce fine particle concentrations," said Docherty. He and his colleagues cautioned that it is not clear which VOCs are most responsible for haze formation.

Docherty also pointed out that while all types of fine particle pollutants are considered harmful, little is known about how a particle's chemical composition might exacerbate its impact on human health. Fine particles have diameters of less than 2.5 microns, or less than one-tenth the diameter of a human hair.

The CU-Boulder-led study employed several continuous and filter-based sampling techniques, as well as five different methods to estimate the amount of chemically formed, organic particles in haze. All five methods showed that 68 to 90 percent of total organic pollution hanging over the Los Angeles region during the afternoon is secondary in nature. During the morning commute, when direct emissions from vehicles are at their peak, secondary particles still make up about half of the organic haze.

"We have used almost all the methods that can be used to attack this problem, and the fact that they give consistent results at one location and time is very telling," said project director and CU-Boulder Professor Jose-Luis Jimenez. Jimenez conducted similar research in Pittsburgh in 2002 and Mexico City in 2006, where secondary organic particles also were found to contribute significantly to the region's poor air quality.

Provided by University of Colorado at Boulder

Explore further: New insights into the forms of metal-organic frameworks

Related Stories

New insights into the forms of metal-organic frameworks

January 24, 2017

The accurate interpretation of particle sizes and shapes in nanoporus materials is essential to understanding and optimizing the performance of porous materials used in many important existing and potentially new applications. ...

The future of nuclear energy

November 28, 2016

Early this year, Rachel Slaybaugh attended a campus mixer on technological innovation. When she introduced herself as a professor of nuclear engineering, other attendees would pause and ask for clarification. She remembers, ...

Intestinal cells 'remodel' in response to a fatty meal

November 2, 2016

New work led by Carnegie's Steven Farber sheds light on how form follows function for intestinal cells responding to high-fat foods that are rich in cholesterol and triglycerides. Their findings are published in the Journal ...

Recommended for you

US scientists raise bar for sea level by 2100

January 24, 2017

In the last days of Barack Obama's administration, US government scientists warned even more sea level rise is expected by century's end than previously estimated, due to rapid ice sheet melting at the poles.

Meteorites did not enrich ocean life: study

January 24, 2017

An explosion of ocean life some 471 million years ago was not sparked by a meteorite bombardment of Earth, said a study Tuesday that challenges a leading theory.

Swarm of underwater robots mimics ocean life

January 24, 2017

Underwater robots developed by researchers at Scripps Institution of Oceanography at the University of California San Diego offer scientists an extraordinary new tool to study ocean currents and the tiny creatures they transport. ...

Are we ready for another massive volcanic eruption?

January 24, 2017

An enormous volcanic eruption would not necessarily plunge the world into a new societal crisis, according to a new study of the biggest eruption of the last millennium published in Nature Geoscience.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

GrayMouser
not rated yet Oct 31, 2008
When did keys become a significant pollutant?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.