Soils Limited in Storing Carbon and Mitigating Global Warming, Studies Find

August 18, 2008

(PhysOrg.com) -- Soils, long known to be potential natural "sinks" or storehouses for carbon, are limited in just how much carbon they can stash away, according to two recent studies by researchers at UC Davis; University of Kentucky; University of Bonn, Germany; and Agriculture and Agri-Food Canada.

The findings have implications for how to moderate rising levels of atmospheric carbon, closely linked with the global warming phenomenon.

Results of these studies, led by post-doctoral researcher Haegeun Chung and graduate student Sabrina Gulde of UC Davis' Department of Plant Sciences, appear in the May-June and July-August issues of the Soil Science Society of America Journal.

Scientists have known for some time that the Earth's soils are a tremendous repository for carbon. As plants grow, they take in carbon from the atmosphere and process it into plant tissue. When the plant dies, the carbon is incorporated into the soil, where it becomes bound up with soil particles and microorganisms.

"Because carbon can reside in soils for a long time in a stable form, soils harbor, on the average, two-thirds of the carbon in the land-based ecosystem," Chung said.

She noted that several long-term studies have indicated that as plants continue to add more carbon to the soils, the carbon "sequestered," or stored, in the soils increases proportionately. But other research has found that, in some soils, the levels of carbon in the soil did not increase, despite the addition of more carbon from decayed plant matter.

This suggested that there might be an upper limit to the amount of carbon that can be held by the soil, or in other words, soils can literally become saturated with carbon.

To explore the possibility of a carbon saturation of soils, carbon storage levels of soils were investigated in two agricultural experiments that have been going on for more than 30 years.

In Kentucky, Chung and colleagues studied soils from an experiment where corn is grown under a broad range of fertilizer application rates and two tillage practices.

In another study based in Lethbridge, Canada, Gulde and colleagues analyzed soils cropped to barley under a wide range of manure application rates.

The researchers collected soil samples from the plots and measured overall soil carbon levels. They also separated the soils into various soil-size fractions, and examined their carbon-holding capacity.

As Chung, Gulde and their colleagues suspected, their data indicated that there was a limit to the amount of carbon that could be stored by soils. When high levels of carbon were added through plant growth or manure application, the soil did not sequester carbon anymore. Moreover, the very small-particle components of soil had the least carbon-binding capacity and were saturated with carbon at relatively low levels of carbon addition.

"The Earth's soils have the potential to offset global carbon dioxide emissions from fossil fuel burning by as much as five to 10 percent," Chung said. "Knowing the limits of soils to serve as carbon sinks will allow environmental planners to better predict just how much carbon different soils can sequester."

Collaborating with Chung and Gulde were Professor Johan Six of the Department of Plant Sciences at UC Davis, John Grove of the University of Kentucky, Wulf Amelung of the University of Bonn, and Chi Chang of Agriculture and Agri-Food Canada.

Provided by UC Davis

Explore further: After the fire, charcoal goes against the grain, with the flow

Related Stories

Living on thin air—microbe mystery solved

December 6, 2017

UNSW-Sydney led scientists have discovered that microbes in Antarctica have a previously unknown ability to scavenge hydrogen, carbon monoxide and carbon dioxide from the air to stay alive in the extreme conditions.

Recommended for you

Climate change made Harvey rainfall 15 percent more intense

December 14, 2017

A team of scientists from World Weather Attribution, including researchers from Rice University and other institutions in the United States and Europe, have found that human-caused climate change made the record rainfall ...

East Antarctic Ice Sheet has history of instability

December 13, 2017

The East Antarctic Ice Sheet locks away enough water to raise sea level an estimated 53 meters (174 feet), more than any other ice sheet on the planet. It's also thought to be among the most stable, not gaining or losing ...

Hydraulic fracturing negatively impacts infant health

December 13, 2017

From North Dakota to Ohio to Pennsylvania, hydraulic fracturing, also known as fracking, has transformed small towns into energy powerhouses. While some see the new energy boom as benefiting the local economy and decreasing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.