Mass-Producing Tunable Magnetic Nanoparticles

May 21, 2008

Taking a cue from the semiconductor industry, a team of investigators at Stanford University has developed a method of producing unlimited quantities of highly magnetic nanoparticles suitable for use as magnetic resonance tumor imaging agents.

Equally important, this method can be easily tailored to produce nanoparticles with a wide range of well-defined magnetic properties. Tunability creates the opportunity to use these nanoparticles in multiplexed biosensing applications akin to those now being developed using tunable quantum dots of multiple colors.

Shan Wang, Ph.D., a member of the Center for Cancer Nanotechnology Excellence Focused on Therapy Response, one of eight Centers of Cancer Nanotechnology Excellence (CCNEs) funded by the NCI, led a research team that has been exploring methods of creating large, uniform batches of magnetic nanoparticles. Their current work, reported in the journal Advanced Materials, describes a technique for fabricating magnetic nanoparticles that involves forming two magnetic layers sandwiched around a layer of nonmagnetic material.

To create these sandwich particles, the investigators use a technique known as nanoimprint lithography to create cobalt-iron nanodisks. As a nonmagnetic spacer, the researchers used nanometer-thick layers of ruthenium. By varying the thickness of the ruthenium spacer layer, the investigators found they could alter the magnetic properties of the resulting nanodisks in a predictable manner. The disks are coated with a thin layer of tantalum to stabilize them.

In addition to producing nanoparticles with tunable magnetic properties, the researchers showed that they could use nanoimprint lithography to add additional layers of materials that afforded the resulting disks with other useful properties. For example, the investigators added a layer of gold onto the tantalum surfaces, creating magnetic nanoparticles that could also be detected using surface plasmon resonance imaging, a sensitive optical imaging technique.

This work, which was supported by the NCI’s Alliance for Nanotechnology in Cancer, is detailed in the paper “High-Moment Antiferromagnetic Nanoparticles with Tunable Magnetic Properties.” There is no abstract available for this paper, but a citation is available at the journal’s Web site.

Source: National Cancer Institute

Explore further: Fishing for one bad cell out of trillions of good ones

Related Stories

Fishing for one bad cell out of trillions of good ones

January 17, 2018

Cancer cells can break away from a tumor and circulate through the blood. There are few of the cancer cells compared to the trillions of blood cells. Current methods to find and extract these circulating tumor cells (CTC) ...

New self-regulating nanoparticles could treat cancer

October 24, 2017

Scientists from the University of Surrey have developed 'intelligent' nanoparticles which heat up to a temperature high enough to kill cancerous cells - but which then self-regulate and lose heat before they get hot enough ...

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

Recommended for you

Quantum dot ring lasers emit colored light

January 22, 2018

Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. The different colors are emitted from different parts of the quantum dot—red from the core, green from ...

Fast computer control for molecular machines

January 19, 2018

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.