Hubble Pinpoints Record-Breaking Explosion

April 11, 2008
Hubble Pinpoints Record-Breaking Explosion
Peering across 7.5 billion light-years and halfway back to the Big Bang, NASA´s Hubble Space Telescope has photographed the fading optical counterpart of a powerful gamma ray burst that holds the record for being the intrinsically brightest naked-eye object ever seen from Earth. For nearly a minute on March 19, this single "star" was as bright as 10 million galaxies. Hubble Wide Field and Planetary Camera 2 (WFPC2) images taken on Monday, April 7 show the fading optical counterpart of the titanic blast. Hubble astronomers had hoped to see the host galaxy where the burst presumably originated, but were taken aback that the light from the gamma ray burst is still drowning out the galaxy´s light even three weeks after the explosion. Called a long-duration gamma ray burst, such events are theorized to be caused by the death of a very massive star, perhaps weighing as much as 50 times our Sun. Credit: NASA, ESA

Researchers working at the University of Warwick, with colleagues in Leicester University, ESA and NASA, have used NASA's Hubble Space Telescope to pin point what remains of what was the brightest naked-eye object ever seen from Earth. It is 7.5 billions light-years away halfway back to the big bang.

NASA's Hubble Space Telescope photographed the fading remnants of a powerful gamma ray burst that holds the record for being the brightest naked-eye object ever seen from Earth. For nearly a minute on March 19, this single "star" was as bright as 10 million galaxies.

Hubble Wide Field and Planetary Camera 2 (WFPC2) images taken on Monday, April 7 show the fading optical counterpart of the titanic blast.

Hubble astronomers had hoped to see the host galaxy where the burst presumably originated, but were taken aback that the light from the gamma ray burst is actually still drowning out the galaxy's light even three weeks after the explosion. Called a long-duration gamma ray burst, such events are theorized to be caused by the death of a very massive star, perhaps weighing as much as 50 times our Sun.

"The slow fading leaves astronomers puzzling about just where the energy came from to power this GRB, and makes Hubble's next observations of this object in May all the more crucial" said research team member Dr Andrew Levan of the University of Warwick.

Source: University of Warwick

Explore further: Overlooked treasure—the first evidence of exoplanets

Related Stories

Overlooked treasure—the first evidence of exoplanets

November 2, 2017

Beneath an elegant office building with a Spanish-style red tiled roof in Pasadena, California, three timeworn storerooms safeguard more than a century of astronomy. Down the stairs and to the right is a basement of wonder. ...

Hubble studies source of gravitational waves

October 18, 2017

On Aug. 17, 2017, weak ripples in the fabric of space-time known as gravitational waves washed over Earth. Unlike previously detected gravitational waves, these were accompanied by light, allowing astronomers to pinpoint ...

Bursting with starbirth

September 28, 2017

This oddly-shaped galactic spectacle is bursting with brand new stars. The pink fireworks in this image taken with the NASA/ESA Hubble Space Telescope are regions of intense star formation, triggered by a cosmic-scale collision. ...

Recommended for you

Solar minimum surprisingly constant

November 17, 2017

Using more than a half-century of observations, Japanese astronomers have discovered that the microwaves coming from the sun at the minimums of the past five solar cycles have been the same each time, despite large differences ...

Lava or not, exoplanet 55 Cancri e likely to have atmosphere

November 16, 2017

Twice as big as Earth, the super-Earth 55 Cancri e was thought to have lava flows on its surface. The planet is so close to its star, the same side of the planet always faces the star, such that the planet has permanent day ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
2.3 / 5 (3) Apr 13, 2008
Quote: ["The slow fading leaves astronomers puzzling about just where the energy came from to power this GRB, and makes Hubble's next observations of this object in May all the more crucial" said research team member Dr Andrew Levan of the University of Warwick.]

Astronomers peer through telescopes and make up stories to try to explain what they see.

They are not at fault.

Their interpretation is based on papers by solar, nuclear, particle and astro- physicists who ignored experimental data clearly showing that:

1. The Sun is not a ball of hydrogen and solar neutrinos do not just oscillate away before reaching their detectors (no matter how hard they wished)!

See: "Is there a deficit of solar neutrinos?" Proceeding of the Second NO-VE Workshop on Neutrino Oscillations, Venice, Italy, 3-5 Dec. 2003; arXiv:astro-ph/0410460v1

2. The star that sustains life here on Earth, the Sun, is the iron-rich remains of a supernova that exploded 5 billion years ago, ejected the material that now orbits it, and then re-formed on the collapsed supernova core.

See: "Isotopes tell Sun's origin and operation", First Crisis in Cosmology Conference, Moncao, Portugal, 23-25 June 2005, AIP Conference Proceedings, vol. 822 (2006) pp. 206-225; arXiv:astro-ph/0510001v1

3. Solar luminosity, solar neutrinos, and solar-wind Hydrogen are by-products of repulsive interactions between neutrons in the solar core.

See: "The Sun is a plasma diffuser that sorts atoms by mass," Physics of Atomic Nuclei [or Yadernaya Fizika] vol. 69, number 11, (2006) pp. 1847-1856; arXiv:astro-ph/0609509v3

4. The nuclear energy source that powers the Sun and the cosmos can be seen in mass data for the 3,000 stable and radioactive nuclei that comprise all visible matter in the universe. That source of nuclear energy is more powerful than fission or fusion - the energy sources that were used for the atomic and hydrogen bombs.

See: "On the cosmic nuclear cycle and the similarity of nuclei and stars," Journal of Fusion Energy, vol. 25 (2006) pp. 107-114; arXiv:nucl-th/0511051v1

With kind regards,
Oliver K. Manuel
Emeritus Professor of Nuclear and Cosmo-Chemistry

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.