Black hole expelled from its parent galaxy

April 30, 2008
Black hole expelled from its parent galaxy
Ejection from the nucleus: for the first time in nature, astronomers have observed a supermassive black, which - propelled by gravitational waves - leaves its parent galaxy. The illustration depicts this scenario. Image: MPE/HST-Archive

By an enormous burst of gravitational waves that accompanies the merger of two black holes the newly formed black hole was ejected from its galaxy. This extreme ejection event, which had been predicted by theorists, has now been observed in nature for the first time. The team led by Stefanie Komossa from the Max Planck Institute for extraterrestrial Physics (MPE) have thereby opened a new window into observational astrophysics.

The discovery will have far-reaching consequences for our understanding of galaxy formation and evolution in the early Universe, and also provides observational confirmation of a key prediction from the General Theory of Relativity (Astrophysical Journal Letters, May 10, 2008).

When two black holes merge, waves of gravitational radiation ripple outward through the galaxy at the speed of light. Because the waves are emitted mainly in one direction, the black hole itself is pushed in the opposite direction, much like the recoil that accompanies the firing of a rifle or the launching of a rocket. The black hole is booted from its normal location in the nucleus of the galaxy. If the kick velocity is high enough, the black hole can escape the galaxy completely.

The MPE team’s discovery verifies, for the first time, that these extreme events actually occur; up to now they had only been simulated in supercomputers. The recoiling black hole caught the astrophysicists’ attention by its high speed - 2650 km/s - which was measured via the broad emission lines of gas around the black hole. At this speed, one could travel from New York to Los Angeles in just under two seconds. Because of the tremendous power of the recoil the black hole, which has a mass of several 100 millions solar masses, it was catapulted from the core of its parent galaxy.

In addition to the emission lines from gas bound to the recoiling black hole, the astronomers were also struck by a remarkably narrow set of emission lines originating from gas left behind in the galaxy. This gas has been excited by radiation from the recoiling black hole.

Gas that moves with the black hole - the so-called accretion disk gas - continues to "feed" the recoiling black hole for millions of years. In the process of being accreted, this gas shines in X-ray wavelengths. In fact the team around Komossa also detected this X-ray emission from the disk around the black hole at a distance of 10 billion light years: by chance the region was scanned by the satellite ROSAT, and at the extreme end of the visual field an X-ray source, the position corresponding with the distant galaxy.

Large kicks for mergers

The new discovery is also important because it indirectly proves that black holes do in fact merge and that the mergers are sometimes accompanied by large kicks. This process had been postulated in theory, but never before confirmed via direct observation. Another implication of the discovery is that there must be galaxies without black holes in their nuclei - as well as black holes which float forever in space between the galaxies.

This raises new questions for the scientists: Did galaxies and black holes form and evolve jointly in the early Universe? Or was there a population of galaxies which had been deprived of their central black holes? And if so, how was the evolution of these galaxies different from that of galaxies that retained their black holes?

In a close interplay between theory and observation, the astrophysicists prepare to answer these questions. Various detectors on earth and in space, for example the space interferometer LISA, are set to track gravitational waves. The MPE team`s discovery will provide new impetus for theorists to develop more detailed models of the superkicks and their consequences for the evolution of black holes and galaxies.

Citation: Komossa, S., Zhou, H., Lu, H. A recoiling supermassive black hole in the quasar SDSSJ092712.65+294344.0? Astrophysical Journal Letters, Vol. 678, L81, 2008 (May 10, 2008)

Source: Max-Planck-Institute for Extraterrestrial Physics

Explore further: The current ability to test theories of gravity with black hole shadows

Related Stories

Unlocking the secrets to dark matter

April 16, 2018

University of Miami astrophysicist Nico Cappelluti studies the sky. An assistant professor in the Physics Department, Cappelluti is intrigued by the cosmic phenomena of super massive black holes, the nature of dark matter, ...

Dense stellar clusters may foster black hole megamergers

April 10, 2018

When LIGO's twin detectors first picked up faint wobbles in their respective, identical mirrors, the signal didn't just provide first direct detection of gravitational waves—it also confirmed the existence of stellar binary ...

The background hum of space could reveal hidden black holes

April 12, 2018

Deep space is not as silent as we have been led to believe. Every few minutes a pair of black holes smash into each other. These cataclysms release ripples in the fabric of spacetime known as gravitational waves. Now Monash ...

The gamma ray burst – supernova connection

April 16, 2018

A "core-collapse" supernova occurs when the iron core of a massive star collapses under the force of gravity and then rebounds, generating pressure waves and shocks that propagate outward. A superluminous supernovae is a ...

Recommended for you

Atoms may hum a tune from grand cosmic symphony

April 19, 2018

Researchers playing with a cloud of ultracold atoms uncovered behavior that bears a striking resemblance to the universe in microcosm. Their work, which forges new connections between atomic physics and the sudden expansion ...

7 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

David6502
4 / 5 (1) Apr 30, 2008
So have gravitational waves actually been observed yet?
Mercury_01
3.5 / 5 (2) Apr 30, 2008
Wow.
thales
5 / 5 (1) Apr 30, 2008
No, if the waves themselves had been observed it would be a major story. Pretty amazing all the same.
brant
not rated yet Apr 30, 2008
Is that a flying saucer leaving that galaxy????
earls
not rated yet Apr 30, 2008
lol brant my thoughts exactly
_Scott_
not rated yet May 01, 2008
"astronomers have observed a supermassive black"
superhuman
not rated yet May 03, 2008
So there may be many stray supermassive black holes lurking in the void, waiting for an opportunity to meet intelligent life...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.