Fake diamonds help jet engines take the heat

March 17, 2008
Fake diamonds help jet engines take the heat
Conventional ceramic coating destroyed by molten glass. The field of view is about half a millimeter. Image by Aysegul Aygun and Nitin Padture, courtesy of Ohio State University

Ohio State University engineers are developing a technology to coat jet engine turbine blades with zirconium dioxide -- commonly called zirconia, the stuff of synthetic diamonds -- to combat high-temperature corrosion.

The zirconia chemically converts sand and other corrosive particles that build up on the blade into a new, protective outer coating. In effect, the surface of the engine blade constantly renews itself.

Ultimately, the technology could enable manufacturers to use new kinds of heat-resistant materials in engine blades, so that engines will be able to run hotter and more efficiently.

Nitin Padture, professor of materials science and engineering at Ohio State, said that he had military aircraft in mind when he began the project. He was then a professor at the University of Connecticut.

“In the desert, sand is sucked into the engines during takeoffs and landings, and then you have dust storms,” he said. “But even commercial aircraft and power turbines encounter small bits of sand or other particles, and those particles damage turbine blades.”

Jet engines operate at thousands of degrees Fahrenheit, and blades in the most advanced engines are coated with a thin layer of temperature-resistant, thermally-insulating ceramic to protect the metal blades. The coating -- referred to as a thermal-barrier coating -- is designed like an accordion to expand and contract with the metal.

The problem: When sand hits the hot engine blade it melts -- and becomes glass.

“Molten glass is one of the nastiest substances around. It will dissolve anything,” Padture said.

The hot glass chews into the ceramic coating. But the real damage happens after the engine cools, and the glass solidifies into an inflexible glaze on top of the ceramic. When the engine heats up again and the metal blades expand, the ceramic coating can’t expand, because the glaze has locked it in place. The ceramic breaks off, shortening the life of the engine blades.

In a recent issue of the journal Acta Materialia, Padture and his colleagues described how the new coating forces the glass to absorb chemicals that will convert it into a harmless -- and even helpful -- ceramic.

The key, Padture said, is that the coating contains aluminum and titanium atoms hidden inside zirconia crystals. When the glass consumes the zirconia, it also consumes the aluminum and titanium. Once the glass accumulates enough of these elements, it changes from a molten material into a stable crystal, and it stops eating the ceramic.

“The glass literally becomes a new ceramic coating on top of the old one. Then, when new glass comes in, the same thing will happen again. It’s like it’s constantly renewing the coating on the surface of the turbine,” Padture said.

Padture’s former university has applied for a patent on the technique that he devised for embedding the aluminum and titanium into the zirconia. He’s partnering with Inframat Corp., a nanotechnology company in Connecticut, to further develop the technology.

Padture stressed that the technology is in its infancy. He has yet to apply the coatings to complex shapes, and cost is a barrier as well: the process is energy-consuming.

But if that cost eventually came down and the technology matured, the payoff could be hotter engines that burn fuel more efficiently and create less pollution. Manufacturers would be able to use more sophisticated ceramics that boost the heat-resistance of engines. Eventually, technology could go beyond aircraft and power-generator turbines and extend to automobiles as well, Padture said.

Source: Ohio State University

Explore further: Creating a slippery slope on the surface of medical implants

Related Stories

Creating a slippery slope on the surface of medical implants

November 1, 2016

Implanted medical devices such as left ventricular-assist devices for patients with heart failure or other support systems for patients with respiratory, liver or other end organ disease save lives every day. However, bacteria ...

Perovskite solar cells hit new world efficiency record

December 1, 2016

They're flexible, cheap to produce and simple to make - which is why perovskites are the hottest new material in solar cell design. And now, engineers at Australia's University of New South Wales in Sydney have smashed the ...

Battery research reaching out to higher voltages

December 13, 2016

For years, small rechargeable lithium-ion batteries have reliably supplied billions of portable devices with energy. But manufacturers of high-energy applications such as electric cars and power storage systems seek for new ...

New metamaterial paves way for terahertz technologies

October 24, 2016

A research team led by UCLA electrical engineers has developed an artificial composite material to control of higher-frequency electromagnetic waves, such as those in the terahertz and far-infrared frequencies.

Recommended for you

First-ever X-ray image capture of material defect process

January 17, 2017

From blacksmiths forging iron to artisans blowing glass, humans have for centuries been changing the properties of materials to build better tools – from iron horseshoes and swords to glass jars and medicine vials.

Flexible ferroelectrics bring two material worlds together

January 17, 2017

Until recently, "flexible ferroelectrics" could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration ...

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

dse471
5 / 5 (1) Mar 17, 2008
"Synthetic" diamond and "faux" diamond are two completely different concepts. Consider synthetic oil; it's not natural, but it is physically oil. Cubic zirconia is *NOT* an allotrope of carbon; it is false/faux. Zirconia not physically equivalent to diamond.
DGBEACH
not rated yet Mar 18, 2008
Doesn't adding mass onto separate turbine fins in this fashion increase wear on the inner-bearings due to increased vibrations?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.