North Atlantic warming tied to natural variability; but global warming may be at play elsewhere

January 3, 2008

A Duke University-led analysis of available records shows that while the North Atlantic Ocean’s surface waters warmed in the 50 years between 1950 and 2000, the change was not uniform. In fact, the subpolar regions cooled at the same time that subtropical and tropical waters warmed.

This striking pattern can be explained largely by the influence of a natural and cyclical wind circulation pattern called the North Atlantic Oscillation (NAO), wrote authors of a study published Thursday, Jan. 3, in Science Express, the online edition of the journal Science.

Winds that power the NAO are driven by atmospheric pressure differences between areas around Iceland and the Azores. “The winds have a tremendous impact on the underlying ocean,” said Susan Lozier, a professor of physical oceanography at Duke’s Nicholas School of the Environment and Earth Sciences who is the study’s first author.

Other studies cited in the Science Express report suggest human-caused global warming may be affecting recent ocean heating trends. But Lozier and her coauthors found their data can’t support that view for the North Atlantic. “It is premature to conclusively attribute these regional patterns of heat gain to greenhouse warming,” they wrote.

“The take-home message is that the NAO produces strong natural variability,” said Lozier in an interview. “The simplistic view of global warming is that everything forward in time will warm uniformly. But this very strong natural variability is superimposed on human-caused warming. So researchers will need to unravel that natural variability to get at the part humans are responsible for.”

In research supported by the National Science Foundation in the United States and the Natural Environment Research Council in the United Kingdom, her international team analyzed 50 years of North Atlantic temperature records collected at the National Oceanic Data Center in Washington, D.C.

To piece together the mechanisms involved in the observed changes, their analysis employed an ocean circulation model that predicts how winds, evaporation, precipitation and the exchange of heat with the atmosphere influences the North Atlantic’s heat content over time. They also compared those computer predictions to real observations “to test the model’s skill,” the authors wrote.

Her group’s analysis showed that water in the sub-polar ocean –- roughly between 45 degrees North latitude and the Arctic Circle –- became cooler as the water directly exchanged heat with the air above it.

By contrast, NOA-driven winds served to “pile up” sun-warmed waters in parts of the subtropical and tropical North Atlantic south of 45 degrees, Lozier said. That retained and distributed heat at the surface while pushing underlying cooler water further down.

The group’s computer model predicted warmer sea surfaces in the tropics and subtropics and colder readings within the sub-polar zone whenever the NAO is in an elevated state of activity. Such a high NAO has been the case during the years 1980 to 2000, the scientists reported.

“We suggest that the large-scale, decadal changes...associated with the NAO are primarily responsible for the ocean heat content changes in the North Atlantic over the past 50 years,” the authors concluded.

However, the researchers also noted that this study should not be viewed in isolation. Given reported heat content gains in other oceans basins, and rising air temperatures, the authors surmised that other parts of the world's ocean systems may have taken up the excess heat produced by global warming.

“But in the North Atlantic, any anthropogenic (human-caused) warming would presently be masked by such strong natural variability,” they wrote.

Source: Duke University

Explore further: Huge energy potential in open ocean wind farms in the North Atlantic

Related Stories

Researchers study heat waves over the Yangtze River valley

September 21, 2017

Under global warming, East China is experiencing more heat waves with increasing intensity. The strongest heat wave over the Yangtze River valley (YRV) since 1951 occurred in 2013, and severely affected the economy and the ...

Longer, stronger summers in the Gulf of Maine

September 5, 2017

Summer is coming to the Gulf of Maine, longer and warmer than ever—as much as two months longer. That's the message of a new research article by a team of scientists led by Andrew Thomas of the University of Maine School ...

Is Hurricane Harvey a harbinger for Houston's future?

August 28, 2017

Over the past week we have seen two major tropical storms devastate different parts of the world. First Typhoon Hato struck Hong Kong and Southern China killing at least a dozen people. And over the weekend Hurricane Harvey ...

Recommended for you

Mysterious deep-Earth seismic signature explained

November 22, 2017

New research on oxygen and iron chemistry under the extreme conditions found deep inside the Earth could explain a longstanding seismic mystery called ultralow velocity zones. Published in Nature, the findings could have ...

Scientists dispute missing dryland forests

November 21, 2017

Scientists are disputing the possibility that a significant portion of the world's forests have been missed in an earlier accounting of ecological diversity.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.