NASA approves space mission to unlock the secrets of magnetic reconnection

December 3, 2007

NASA has stepped up to the challenge of an NRC study by defining a four-spacecraft constellation that will probe known magnetic reconnection sites with the highest-resolution charged particle, electric field and magnetic field measurements yet performed in space.

Magnetic fields are continuously being generated and annihilated throughout the universe. The generation takes place by the motions of conductive fluids in the interiors of planets, the Sun and stars. Simultaneously, annihilation takes place, often violently, in these and other regions including solar and stellar atmospheres, the boundaries between solar and stellar winds, planetary magnetospheres around strong magnetic stars such as pulsars, and in exploding supernovas.

Energy is transferred to the surrounding gases in these annihilation regions, producing high-energy particles, solar flares, magnetic storms and the aurora. This annihilation process is called magnetic reconnection, and there is mounting evidence that it is one of the most important processes of energy generation throughout the universe.

NASA has recognized that there is an ideal place where magnetic reconnection can be directly probed in space, and that is at the boundary between the solar wind and planetary magnetospheres and within the long drawn-out tails of those magnetospheres. The Earth's magnetosphere is the most accessible of these, leading to the high priority given to the Magnetospheric Multiscale (MMS) mission in the latest decadal survey on Solar and Space Physics published by the National Research Council (NRC).

Separations among the four spacecraft will be controlled precisely down to distances of 10 kilometers, which will require a novel new system of inter-spacecraft ranging and communication. The extremely high data rates needed to probe magnetic reconnection leads to a burst-mode data acquisition system that relies on the ability of the four spacecraft to communicate their findings to each other in real time so that critical information can be relayed to the ground for analysis while less important data are discarded. Analysis of the data is expected to determine how magnetic field energy is rapidly converted into heat and the kinetic energy of charged particles leading to the understanding of perhaps the most fundamental energy-transfer mechanism in the universe.

The MMS mission is managed by the NASA Goddard Space Flight Center, which will build the four spacecraft and the inter-spacecraft ranging and communication system. Southwest Research Institute leads the science investigation and development of the instrument suite together with numerous partners including the University of New Hampshire, NASA GSFC, Johns Hopkins University Applied Physics Laboratory, University of Colorado, and international partners in Austria, Sweden, France and Japan.

Source: Southwest Research Institute

Explore further: Magnetic liquids improve energy efficiency of buildings

Related Stories

Magnetic liquids improve energy efficiency of buildings

January 16, 2018

Climate protection and the reduction of carbon dioxide emissions have been on top of global development agendas. Accordingly, research and development projects have been conducted on national and international levels, which ...

Magnetic coil springs accelerate particles on the Sun

January 11, 2018

In April and July 2014, the Sun emitted three jets of energetic particles into space, that were quite exceptional: the particle flows contained such high amounts of iron and helium-3, a rare variety of helium, as have been ...

Recommended for you

New research challenges existing models of black holes

January 19, 2018

Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), has collaborated on a new study that expands the scientific community's understanding of black holes in our galaxy ...

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

Meteoritic stardust unlocks timing of supernova dust formation

January 18, 2018

Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it can be a tool to study the history of our universe, ...

New technique for finding life on Mars

January 18, 2018

Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.