Shaping the future -- from sleep to air travel

November 1, 2007
Shaping the future -- from sleep to air travel
CHISMACOMB, (CHIral SMArt honeyCOMB)

Imagine airplane wings that can change shape in mid-air or a material that can curve, bulge or twist without the need for expensive and heavy motors or hydraulics. Imagine a material that gets thicker when stretched, unlike conventional materials that get thinner – a substance that could be used in anything from a mattress to an airplane. The implications are enormous.

Now, thanks to a new European Union-funded project CHISMACOMB (CHIral SMArt honeyCOMB), led by University of Bristol researchers, this innovative new technology is set to make this a reality.

The project has developed an auxetic, honeycomb-structure material which becomes thicker when stretched, allowing greater flexibility without compromising strength.

The technology can be used in sandwich structures, whereby the material is inserted between layers of another material such as carbon fibre. These sandwich structures are widely used in the civil, naval and aerospace construction, and in industries using electromagnetic shields.

The University has also applied the technology to aircraft wing design where promising results have shown that the wings may bend, twist, shrink and expand to continuously optimise their aerodynamic properties during flight, resulting in lower noise and potentially much lower carbon emissions.

These radical new materials are also giving marine designers the step change needed to improve the sandwich structures in mine-hunting ships, and in the decks and joints of pleasure boats.

Dr Fabrizio Scarpa, project leader and Reader in Engineering in the Department of Aerospace Engineering at the University, said: “These materials offer exciting new possibilities and change the nature of how composite materials, in particular carbon fibre cellular structures, can be used to gain even greater advantages from them.”

Source: University of Bristol

Explore further: Physicists use mathematical algorithms to examine experimental 3-D structures of chromosomes

Related Stories

Researching the risks and realities of wildfires

October 20, 2017

Internationally renowned expert on wildfires Albert Simeoni, a professor and the interim director of WPI's Fire Protection Engineering department, has been watching developments in Northern California where extreme fires ...

Enhancing solar power with diatoms

October 20, 2017

Diatoms, a kind of algae that reproduces prodigiously, have been called "the jewels of the sea" for their ability to manipulate light. Now, researchers hope to harness that property to boost solar technology.

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.