Water forms floating 'bridge' when exposed to high voltage

September 28, 2007 By Lisa Zyga, Phys.org feature
Water forms floating 'bridge' when exposed to high voltage
When water in two beakers is exposed to a high voltage, a floating water bridge forms between the beakers. Credit: Elmar Fuchs, et al.

While it's one of the most important and abundant chemical compounds on Earth, water is still a puzzle to scientists. Much research has been done to uncover the structure of water beyond the H2O scale, which is thought to be responsible for many of water’s unique properties. However, the nature of this structure, governed by hydrogen bonds, is currently unknown.

“Water undoubtedly is the most important chemical substance in the world,” explained Elmar Fuchs and colleagues from the Graz University of Technology in Austria in a recent study. “The interaction of water with electric fields has been intensely explored over the last years. We report another unusual effect of liquid water exposed to a dc electric field: the floating water bridge.”

When exposed to a high-voltage electric field, water in two beakers climbs out of the beakers and crosses empty space to meet, forming the water bridge. The liquid bridge, hovering in space, appears to the human eye to defy gravity.

Upon investigating the phenomenon, the scientists found that water was being transported from one beaker to another, usually from the anode beaker to the cathode beaker. The cylindrical water bridge, with a diameter of 1-3 mm, could remain intact when the beakers were pulled apart at a distance of up to 25 mm.

Why water would act this way was a surprise, Fuchs told PhysOrg.com. But the group’s analyses have shown that the explanation may lie within the nature of the water’s structure. Initially, the bridge forms due to electrostatic charges on the surface of the water. The electric field then concentrates inside the water, arranging the water molecules to form a highly ordered microstructure. This microstructure remains stable, keeping the bridge intact.

The scientists reached the microstructure hypothesis after observing that the density of the water changes between the beaker edges and the center of the bridge. A microstructure consisting of an arrangement of water molecules could have a similar density variation.

In their experiments, the scientists also discovered the existence of high frequency oscillations inside the bridge, and they observed corresponding inner structures with a high-speed camera and visualization system. Unlike the much slower surfaces waves, these high frequency oscillations weren’t caused by surface tension. Rather, the scientists predict that the oscillating structures were triggered by the waviness of the voltage supply itself.

The researchers noticed a pattern with the inner structures: every experiment started with a single inner structure, which then decayed into additional structures after a few minutes of operation. The group thought that this decay might be caused by either dust contamination or the increasing temperature of the water bridge under the electric field. As the water temperature increased from 20 degrees Celsius to more than 60 degrees Celsius—which took about 45 minutes—the bridge collapsed.

The scientists explain that the unusual effect of the floating water bridge, as well as the microstructures they observed during the interaction of water with electric fields, could be another piece to the puzzle of the structure of water. The group said that they are currently investigating how highly ordered microstructures may explain the density change in the water bridge, with the results to appear in a future publication.

Citation: Fuchs, Elmar C., Woisetschläger, Jakob, Gatterer, Karl, Maier, Eugen, Pecnik, René, Holler, Gert, and Eisenkölbl, Helmut. “The floating water bridge.” J. Phys. D: Appl. Phys. 40 (2007) 6112-6114.

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Sailing towards a fully electric ferry

Related Stories

Sailing towards a fully electric ferry

October 31, 2018

The Danish island of Aeroe, located in the Baltic Sea, is one of the few islands not connected to the mainland by a bridge. As a result, it is dependent on car ferries. Aeroe also has another distinction: it aims to become ...

New technologies in the ocean energy sector

October 30, 2018

While the ocean energy sector is still at an early stage of development, a new report analyses ten future emerging technologies to generate energy from the ocean tides and waves.

New technology improves hydrogen manufacturing

September 4, 2018

Industrial hydrogen is closer to being produced more efficiently, thanks to findings outlined in a new paper published by Idaho National Laboratory researchers. In the paper, Dr. Dong Ding and his colleagues detailed advances ...

Big quake hits northern Japan, leaving 9 dead, 30 missing

September 6, 2018

A powerful earthquake Thursday on Japan's northernmost main island of Hokkaido triggered dozens of landslides that crushed houses under torrents of dirt, rocks and timber, prompting frantic efforts to unearth any survivors.

Recommended for you

Tiny lasers light up immune cells

November 20, 2018

A team of researchers from the School of Physics at the University of St Andrews have developed tiny lasers that could revolutionise our understanding and treatment of many diseases, including cancer.

The subtle science of wok tossing

November 19, 2018

Wok tossing is essential for making a good fried rice—or so claim a group of researchers presenting new work at the American Physical Society's Division of Fluid Dynamics 71st Annual Meeting, which will take place Nov. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.