Mixing Electricity and Water

August 9, 2007
Mixing Electricity and Water
SLAC physicist Andrew Fisher holds a section of heavy copper winding used as a conductor in electromagnets, hollowed out to carry low conductivity cooling water.

Every hair dryer in America is tagged with a large warning label not to use it near water for one obvious reason: mixing the two could result in electrocution and even death. But did you know that it is not actually the water that presents the threat?

Water in its purest form is not conductive. Instead, it is the impurities in the water—salts, dust, and so on—that enables it to conduct electricity.

In fact, low conductivity water (LCW)—which is purified and deionized—has been used for decades to cool high-voltage equipment such as magnets and klystrons.

LCW commonly flows through accelerator magnets to cool them. These rectangular, copper or aluminum wires measure up to two inches per side and are coiled in various arrangements to produce magnetic fields of different shapes and strengths. A hole in these copper wires carries LCW to remove heat generated by the electric currents.

"SLAC makes a lot of hot water," said SLAC electrical engineer Martin Berndt, who has designed magnets and power supplies that use LCW at SLAC for over 30 years. "It is a great way of removing heat from high-power electrical devices."

The PEP ring, the SSRL ring and various beam transport lines contain many magnets that use LCW. Unlike hair dryers, the concern with mixing water and electricity in the magnets is not electrocution, but corrosion. Lowering the water's conductivity effectively minimizes this corrosiveness.

Without LCW, the magnets would slowly be eaten away from the inside out and engineers would have to find another way to dissipate as much as 30 megawatts—16,000 hair dryers worth—of power every day.

Source: by Ken Kingery, SLAC Today

Related Stories

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.