Benchmark survey shows that giant outer extrasolar planets are rare

July 11, 2007
Comparison of Images Taken With SDI On and Off
Comparison of images taken with SDI on and off. A number of fake planets (at separations of 0.55", 0.85", and 1.15" from the star) were added in to this data, which was then analyzed first using the SDI method and second, using standard adaptive optics techniques. The simulated planets, each seen as a pair of black-and-white dots 33 degrees apart in the SDI image, are easily detected yet are 10,000 times fainter than the central star in the standard adaptive optics analysis. Credit: Beth Biller, Laird Close, UA Steward Observatory

Astronomers who used powerful telescopes in Arizona and Chile in a survey for planets around nearby stars have discovered that extrasolar planets more massive than Jupiter are extremely rare in other outer solar systems.

University of Arizona astronomers and their collaborators from the European Southern Observatory, Max Planck Institute for Astronomy at Heidelberg, Italy's Arcetri Observatory, the W.M. Keck Observatory and the Harvard-Smithsonian Center for Astrophysics just concluded a benchmark 3-year survey using direct detection techniques sensitive to planets farther from their stars. The survey looked at 54 young, nearby stars that were among the best candidates for having detectable giant Jupiter-like planets at distances beyond 5 astronomical units (AU), or the distance between Jupiter and the sun. (One AU is the distance between Earth and the sun.)

Since 1995, astronomers have found more than 230 "super Jupiters" orbiting very close to their parent stars using the radial velocity method. This indirect planet-detecting technique measures the slight back-and-forth motion of the star as it is tugged by an unseen planet's gravity. Scientists have written more than 2,000 scholarly papers about these giant Jupiter-like planets within a few Earth-to-sun distances of their stars.

However, the radial velocity method presently used is most sensitive to planets close to their stars. The technique reveals little about extrasolar planets farther out in nearby solar systems.

Astronomers need other techniques to map extrasolar planets beyond 5 AU so they can determine what the "average" planetary system looks like -- and whether ours is a typical solar system.

The 3-year survey didn't turn up even one giant extrasolar planet in the outer part of any nearby solar system.

"We certainly had the ability to detect outer super Jupiter planets at 10 AU, and farther out, around young sun-like stars," said UA astronomy Professor Laird Close. Close, along with Rainer Lenzen of the Max Planck Institute for Astronomy, Heidelberg, and Don McCarthy of the University of Arizona, designed the unique, methane-planet sensitive imagers used on two powerful telescopes for the survey.

"The odds are extremely slight that planets larger than four to five Jupiter masses exist at distances greater than 20 AU from these stars," concluded graduating doctoral student Beth Biller of the UA Steward Observatory. Biller is lead author on the first scholarly paper reporting direct-imaging results for farther-out massive Jupiters from this survey, the most sensitive to date.

"There is no 'planet oasis' between 20 and 100 AU," doctoral student Eric Nielsen of UA's Steward Observatory agreed. "We achieved contrasts high enough to find these super Jupiters, but didn't." 20 AU is the orbital distance of the planet Uranus in our own solar system.

Astronomers were surprised in the early days of planet finding to discover a population of planets more massive than Jupiter, within the orbit of Mercury, taking only a few days to orbit their host star, Biller said. "Now that we know there aren't large numbers of giant planets lurking at large distances from their stars, astronomers have a more complete picture, and can better constrain how planets are formed," she said.

The team used Close's novel Simultaneous Differential Imager (SDI) for observations made with the European Southern Observatory's (ESO) 8.2-meter Very Large Telescope's (VLT) in Chile and with the 6.5-meter, UA/Smithsonian MMT Observatory on Mount Hopkins, Ariz.

One SDI instrument was used with Lenzen's CONICA adaptive optics camera on the VLT, and another SDI instrument was used with McCarthy's ARIES adaptive optics camera on the MMT. The SDI devices made the highest contrast astronomical images ever made from ground or space of methane-rich companions within an arc second of their stars. (An arc second is the diameter of a dime seen from two miles away).

Source: University of Arizona

Explore further: Does New Horizons' next target have a moon?

Related Stories

Does New Horizons' next target have a moon?

December 12, 2017

Scientists were already excited to learn this summer that New Horizons' next flyby target – a Kuiper Belt object a billion miles past Pluto – might be either peanut-shaped or even two objects orbiting one another. Now ...

Closest temperate world orbiting quiet star discovered

November 15, 2017

A team working with ESO's High Accuracy Radial velocity Planet Searcher (HARPS) at the La Silla Observatory in Chile has found that the red dwarf star Ross 128 is orbited by a low-mass exoplanet every 9.9 days. This Earth-sized ...

Two super-Earths around star K2-18

December 5, 2017

New research using data collected by the European Southern Observatory (ESO) has revealed that a little-known exoplanet called K2-18b could well be a scaled-up version of Earth.

Recommended for you

Bright areas on Ceres suggest geologic activity

December 13, 2017

If you could fly aboard NASA's Dawn spacecraft, the surface of dwarf planet Ceres would generally look quite dark, but with notable exceptions. These exceptions are the hundreds of bright areas that stand out in images Dawn ...

Major space mystery solved using data from student satellite

December 13, 2017

A 60-year-old mystery regarding the source of some energetic and potentially damaging particles in Earth's radiation belts is now solved using data from a shoebox-sized satellite built and operated by University of Colorado ...

Spanning disciplines in the search for life beyond Earth

December 13, 2017

The search for life beyond Earth is riding a surge of creativity and innovation. Following a gold rush of exoplanet discovery over the past two decades, it is time to tackle the next step: determining which of the known exoplanets ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.