Macro, not micro: modified theories of gravity

February 16, 2007, Phys.org feature

When it comes to cosmology, the macro scale is important. As scientists search for the reasons behind the increasing rate at which the universe is expanding, they modify Einstein’s theory of gravity and delve into dark energy theories to explain this counter-intuitive phenomenon.

These simple modifications are represented as f(R) theories, and they are used to explain what is seen on a cosmic scale. But there’s a problem. “Some modified theories of gravity have nice features for cosmology, on the big scale, but they don’t work so well on the small scale,” Gonzalo Olmo explains to PhysOrg.com. “I managed to solve these equations on the micro level, and I found that they are inconsistent.”

Olmo, 28, is a post-doc at the University of Wisconsin-Milwaukee. He says he solved these equations two years ago, but waited until interpreting them to have them published. His recent letter in Physical Review Letters, which puts forth the equations and their interpretations, is titled “Violation of the Equivalence Principle in Modified Theories of Gravity.”

In the Letter, Olmo presents equations that suggest that when some modified theories of gravity are applied to the micro scale, new properties emerge that can effectively rule out some theories that explain accelerating universe expansion.

“If we manage to show these theories are not consistent, which it looks like, then this approach in cosmology would be useless,” Olmo points out. He says that there are two main ways modified theories are studied: in the metric formalism or in the Palatini formalism. Olmo explains that his paper focuses on theories of gravity in the Palatini formalism. “[T]he connection is regarded as independent of the metric and, therefore, must be determined by solving its corresponding field equations,” the paper says.

Olmo says that when he solved the equations on the micro scale, he noticed the emergence of new properties: “These new properties have never been seen in other modified theories of gravity, and these new properties are what make these theories so weird on the micro scale.”

Even though Olmo says that these theories would not do to explain the expansion of the universe, since they are inconsistent on the micro scale, there are some uses for modified theories of gravity. He explains that the differences between how these modified theories work on the macro scale and on the micro scale could offer insight into the interaction between gravitation and quantum physics.

“According to Einstein,” Olmo explains, “spacetime should be nearly flat in, for instance, your dining room or the interior of an atom.” He pauses before continuing: “However, in Palatini theories we find that it is curved even on a micro level, which has a strong effect on the properties of the quantum world. This can lead to better understanding by seeing how these modified theories of gravity interact with quantum theory.”

“There are different possibilities to the reasons behind the acceleration of the universe,” continues Olmo. “Some theorists use dark energy to explain the expansion, and others modify the equations of gravity to say it is not dark energy. However, there could be a mix.” He says that it is very difficult to distinguish the effects of dark energy from those of modified equations, and the difference could hold the key to discovering what’s behind the increasing rate of expansion of our universe. And he thinks applying modified theories of gravity to the micro scale as well as to the macro scale could help determine the different effects. “If this idea can get going,” he enthuses, “there could be a very interesting future.”

By Miranda Marquit, Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Dark matter may not actually exist – and our alternative theory can be put to the test

Related Stories

Scientists develop promising new type of polymer

January 15, 2019

Organic polymers are used in solar cells, sensors, LEDs and in many other devices. One specific type of polymer, S-PPV, was previously regarded as promising in theory, but almost impossible to produce from a technical perspective. ...

Will we ever see a black hole?

November 22, 2018

In the shadowy regions of black holes two fundamental theories describing our world collide. Can these problems be resolved and do black holes really exist? First, we may have to see one and scientists are trying to do just ...

Researchers design technology that sees nerve cells fire

December 13, 2018

Scientists have plenty of ways to watch as individual neurons in a brain fire, sending electrical signals from one to the next, but they all share a basic problem. Each method, whether it involves electrical probes, chemical ...

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.