Protein Cage Helps Nanoparticles Target Tumors

January 17, 2007

Researchers at Montana State University have used an engineered form of ferritin, a cage-like iron storage protein, to both synthesize and deliver iron oxide nanoparticles to tumors. The investigators, led by Trevor Douglas, Ph.D., and Mark Young, Ph.D., reported their findings in the Journal of the American Chemical Society.

Normally, human ferritin comprises two subunits that together create a protein that can store iron and ferry it throughout the body. For this work, however, the researchers used a genetically engineered form of the protein that contains only one subunit and that also contains a short peptide that binds to the blood vessels that surround cells.

This engineered ferritin protein self-assembles into a cage-like structure that catalyzes the conversion of soluble iron into nanoscale iron oxide particles. Those iron oxide nanoparticles, containing between 3,000 and 5,000 iron atoms among them, grow within each protein cage, creating a tumor-targeted protein nanostructure that can act as a magnetic resonance imaging (MRI) contrast agent.

Experiments with tumor cells growing in culture demonstrated that these engineered nanostructures were capable of binding to tumor cells expressing a protein known as ævß3. The researchers note that the use of other cage-like proteins, instead of ferritin, could provide a wide range of tools for targeting tumors and delivering imaging agents and drugs to malignant cells. They believe that their method for producing these proteins in a form engineered to display tumor-targeting peptides should also prove to be a generally useful technique.

This work is detailed in a paper titled, “Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles.” An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Bioluminescent worm found to have iron superpowers

Related Stories

Bioluminescent worm found to have iron superpowers

December 14, 2017

Researchers at Scripps Institution of Oceanography at the University of California San Diego have made a discovery with potential human health impacts in a parchment tubeworm, the marine invertebrate Chaetopterus sp., that ...

Team devises rapid test for vitamin A, iron deficits

December 5, 2017

Cornell engineers and nutritionists have created a swift solution for a challenging global health problem: a low-cost, rapid test to detect iron and vitamin A deficiencies at the point of care. Their work was published Dec. ...

Parkinson's disease: Iron accumulation to the point of demise

August 19, 2009

Neurons that produce the neurotransmitter dopamine are the cerebral cells that most commonly die-off in Parkinson's disease. The cells in the so-called substantia nigra, which contain the dark pigment neuromelanin, are affected. ...

Spinach and nanodiamonds?

October 3, 2013

Popeye, the comic book hero, swears by it as do generations of parents who delight their children with spinach. Of course, today it is known that the vegetable is not quite as rich in iron as originally thought, but that ...

Recommended for you

Researchers create first superatomic 2-D semiconductor

February 16, 2018

Atoms are the basic building blocks of all matter—at least, that is the conventional picture. In a new study, researchers have fabricated the first superatomic 2-D semiconductor, a material whose basic units aren't atoms ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.