New Method Creates Porous, Multifunctional Silica Nanoparticles

October 30, 2006

Silica, the mineral of which sand is made, is generally inert in the body and can be modified easily using a variety of well-established chemical reactions. As such, researchers have considered silica an ideal candidate material from which to create multifunctional nanoparticles.

Indeed, several teams of investigators have crafted porous nanoparticles and shown that these materials hold promise as drug delivery vehicles, imaging agents, and even nanoscale collection devices for cancer markers.

Now, thanks to work from Chung-Yuan Mou, Ph.D., and colleagues at the National Taiwan University in Taipei, researchers have a new method for making silica nanoparticles that not only have carefully sized pores and are of a very narrow size distribution, but that are also magnetic and luminescent. The multiple functionality could enable investigators to create nanoparticles that can both image and treat tumors simultaneously.

This work appears in the journal Chemistry of Materials.

The investigators created their silica nanoparticles by starting with size-controlled iron nanocrystals and coating them with a porous silica shell. The researchers used mild chemical conditions for the coating step, allowing them to add dye molecules to the reaction mixture. The resulting particles, which are oblong in shape, have a magnetic core, and a porous, luminous shell.

Imaging experiments with these nanoparticles showed that they contained the proper magnetic properties to function as magnetic resonance imaging contrast agents. Additional experiments showed that cancer cells grown in culture take up these nanoparticles in amounts large enough for the particles to be seen using confocal fluorescence microscopy. The particles themselves were not toxic to cells at relatively large doses.

This work is detailed in a paper titled, “Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous.” This paper was published online in advance of print publication. An abstract is available at the journal’s website.

Source: National Cancer Institute

Explore further: Researchers find simpler way to deposit magnetic iron oxide onto gold nanorods

Related Stories

Recommended for you

Elephant and cow manure for making paper sustainably

March 21, 2018

It's likely not the first thing you think of when you see elephant dung, but this material turns out to be an excellent source of cellulose for paper manufacturing in countries where trees are scarce, scientists report. And ...

Smallest ever sieve separates atoms

March 20, 2018

Researchers at The University of Manchester have discovered that the naturally occurring gaps between individual layers of two-dimensional materials can be used as a sieve to separate different atoms.

Quantum bits in two dimensions

March 20, 2018

Two novel materials, each composed of a single atomic layer and the tip of a scanning tunneling microscope, are the ingredients for a novel kind of quantum dot. These extremely small nanostructures allow delicate control ...

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.