Roll-up laptop screens for truly portable computing

September 11, 2006
Roll-up laptop screens for truly portable computing
A mocked-up flexible display supported on one of Keith´s morphing structures.

Dr Keith Seffen, a lecturer in the Structures Group, University of Cambridge, has developed a range of unique solid structures that can change shape.

Known as "morphing" structures they can be used to produce many different configurations but without the need of complex parts or sophisticated manufacture.

Along with his co-workers, Dr Simon Guest and graduate student, Alex Norman, they are working on a range of applications, including re-usable packing, roll-up keyboards, and thin flexible displays for truly portable computing: a "mock-up" and its operation are shown in the photos, where an A5-sized flat screen snaps into a tube for compact carriage in a briefcase or pocket.

Roll-up laptop screens for truly portable computing
The display coiled up into a self-locking tube.

Keith considers the performance of structures from multiple viewpoints, in particular how to retain strength and stiffness while permitting large changes in shape. Typically, civil engineering structures are designed to be strong (safe) and stiff (immovable); when they are not, the consequences can be disastrous.

Writing in Proceedings of the Royal Society of London, Series A (DOI: 10.1098/rspa.2006.1750), he describes a class of structures that behave normally under the usual operating conditions, but when the demands upon them increase, their response softens in a prescribed manner, permitting large yet safe departures from the original shape before becoming stiff and self-locking in a new configuration.

Such behaviour is governed by the choice of material and initial shape of structure, and Keith combines these influences in a systematic manner for the first time, yielding the conditions required for morphing behaviour in a wide range of structures.

Assisted by Cambridge Enterprise, Keith and his team have filed a patent on the manufacture and operation of their morphing devices, and are actively seeking industrial collaboration for future development.

Source: University of Cambridge

Explore further: Unusually sophisticated prehistoric monuments and technology revealed in the heart of the Aegean

Related Stories

How to cut your lawn for grasshoppers

November 22, 2017

Picture a grasshopper landing randomly on a lawn of fixed area. If it then jumps a certain distance in a random direction, what shape should the lawn be to maximise the chance that the grasshopper stays on the lawn after ...

'Scars' left by icebergs record West Antarctic ice retreat

October 25, 2017

Thousands of marks on the Antarctic seafloor, caused by icebergs which broke free from glaciers more than ten thousand years ago, show how part of the Antarctic Ice Sheet retreated rapidly at the end of the last ice age as ...

Dawn finds possible ancient ocean remnants at Ceres

October 26, 2017

Minerals containing water are widespread on Ceres, suggesting the dwarf planet may have had a global ocean in the past. What became of that ocean? Could Ceres still have liquid today? Two new studies from NASA's Dawn mission ...

Recommended for you

On the rebound

January 22, 2018

Our bodies have a remarkable ability to heal from broken ankles or dislocated wrists. Now, a new study has shown that some nanoparticles can also "self-heal" after experiencing intense strain, once that strain is removed.

Nanoparticle gel controls twisted light with magnetism

January 22, 2018

"Help me, Obi Wan Kenobi. You're my only hope." For many of those around at the release of Star Wars in 1977, that scene was a first introduction to holograms—a real technology that had been around for roughly 15 years.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.