Materials Regain Properties Previously Thought to Disappear under Pressure

November 21, 2005

University of Arkansas physicists working with researchers in France have shown that a group of materials used in military sonar and medical ultrasound regain their unique properties at high pressures, overturning a belief held for more than 30 years that these properties disappear at high pressures.

"There is different kind of ferroelectricity that appears under high pressures," said Igor Kornev, research professor of physics in the Fulbright College of Arts and Sciences. Kornev and Laurent Bellaiche, associate professor of physics in Fulbright, together with French researchers Pierre Bouvier of Grenoble, Pierre-Eymeric Janolin and Brahim Dkhil of Paris and Jens Kreisel of Grenoble, reported their findings in the Nov. 4 issue of Physical Review Letters.

Kornev and Bellaiche study ferroelectric materials, which possess spontaneous electrical dipoles, or charge separations. The electrical dipoles allow them to create the images seen in medical ultrasounds and naval sonar by converting mechanical energy into electrical energy. These materials also are used to convert signals to sound in cell phones and other audio devices.

The researchers use computational models to determine what will happen to such materials at different temperatures or pressures.

At a certain high pressure, the ferroelectric properties of these materials, called perovskites, were commonly thought to disappear. Researchers believed that this critical pressure caused the atoms to get "stuck," which made it impossible for them to convert energy, meaning that the effect would not reappear even at higher pressures.

Kornev and Bellaiche decided to use a computer model to track the predicted behavior of a system containing lead titanium oxide at pressures higher than those at which the material typically loses its ferroelectric properties. When they performed the computer simulations, they found to their surprise that after a certain higher pressure threshold, the material began to exhibit ferroelectric properties once again.

"It was an unexpected result," Kornev said. Puzzled by these results, the researchers collaborated with physicists at laboratories in Grenoble and Paris, France, to conduct laboratory experiments using the lead titanium oxide under high pressures. They produced the same result: After a certain pressure point was reached, the ferroelectric properties of the material returned.

However, the ferroelectricity stems from different sources at the different pressures, Kornev said.

At low pressures, the lead ions move away from their ideal positions, causing a dipole, or charge separation. However, this dipole gradually disappears as pressure begins to rise. At high pressures, the electron cloud associated with the titanium and the oxygen appears to be responsible for the reappearance of the dipole and the ferroelectric properties, Kornev said.

"In principle, it means that it is possible to use these materials at higher pressures than previously thought," Kornev said.

Source: University of Arkansas

Explore further: Kevlar-based artificial cartilage mimics the magic of the real thing

Related Stories

Using polymeric membranes to clean up industrial separations

November 16, 2017

There are scores of promising technologies under development that can reduce energy consumption or capture carbon in fields including biotech, computer science, nanotechnology, materials science, and more. Not all will prove ...

Are petite poplars the future of biofuels? Studies say yes

November 16, 2017

In the quest to produce affordable biofuels, poplar trees are one of the Pacific Northwest's best bets—the trees are abundant, fast-growing, adaptable to many terrains and their wood can be transformed into substances used ...

New technology converts biomass into 'coal'

November 16, 2017

The University of Nottingham is partnering with the Energy Research Accelerator (ERA) and CPL Industries to produce a commercial scale facility capable of converting biomass into next-generation solid fuels with coal-like ...

Recommended for you

Physicists design $100 handheld muon detector

November 20, 2017

At any given moment, the Earth's atmosphere is showered with high-energy cosmic rays that have been blasted from supernovae and other astrophysical phenomena far beyond the Solar System. When cosmic rays collide with the ...

Chimp females who leave home postpone parenthood

November 20, 2017

New moms need social support, and mother chimpanzees are no exception. So much so that female chimps that lack supportive friends and family wait longer to start having babies, according to researchers who have combed through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.