When superconductivity material science meets nuclear physics

Imagine a wire with a thickness roughly one-hundred thousand times smaller than a human hair and only visible with the world's most powerful microscopes. They can come in many varieties, including semiconductors, insulators ...

Device splits and recombines superconducting electron pairs

A device that can separate and recombine pairs of electrons may offer a way to study an unusual form of superconductivity, according to RIKEN physicists. This superconducting state would involve exotic particles called Majorana ...

Paving a way to achieve unexplored semiconductor nanostructures

A research team of Ehime University paved a way to achieve unexplored III-V semiconductor nanostructures. They grew branched GaAs nanowires with a nontoxic Bi element employing characteristic structural modifications correlated ...

Nanowire arrays could improve solar cells

Transparent electrodes are a critical component of solar cells and electronic displays. To collect electricity in a solar cell or inject electricity for a display, you need a conductive contact, like a metal, but you also ...

Researchers tune nanowire properties with peptide 'decorations'

In the latest paper from the Geobacter Lab led by microbiologist Derek Lovley at the University of Massachusetts Amherst, he and colleagues report "a major advance" in the quest to develop electrically conductive protein ...

Magnetite nanowires with sharp insulating transition

Magnetite (Fe3O4) is best known as a magnetic iron ore, and is the source of lodestone. It also has potential as a high-temperature resistor in electronics. In new research led by Osaka University, published in Nano Letters, ...

Flexible circuits for 3-D printing

A research collaborative between the University of Hamburg and DESY has developed a process suitable for 3-D printing that can be used to produce transparent and mechanically flexible electronic circuits. The electronics ...

page 15 from 40