Novel laser technology for microchip-size chemical sensors

Most lasers emit photons of exactly the same wavelength, producing a single color. However, there are also lasers that consist of many frequencies, with equal intervals in between, as in the teeth of a comb; thus, they are ...

Changing color of light using a spatiotemporal boundary

A KAIST team developed an optical technique to change the color (frequency) of light using a spatiotemporal boundary. The research focuses on realizing a spatiotemporal boundary with a much higher degree of freedom than the ...

Coherent electron trajectory control in graphene

Electronic systems using light waves instead of voltage signals is advantageous, as electromagnetic light waves oscillate at petaherz frequency. This means that future computers could operate at speeds 1 million times faster ...

Millimetre waves for the last mile

Reseachers at ETH Zurich have developed a modulator with which data transmitted via millimetre waves can be directly converted into light pulses for optical fibres. This could make covering the "last mile" up to the internet ...

New IR instrument searches for habitable planets

A new instrument to search for potentially habitable/inhabited planets has started operation at the Subaru Telescope. This instrument, IRD (InfraRed Doppler), will look for habitable planets around red dwarf stars. Astronomers ...

A laser that tracks like a hound

University of Adelaide researchers have created a laser that can "smell" different gases within a sample.

Researchers develop transportable optical atomic clock

Atomic clocks are no longer based on a microwave transition in cesium, instead operating with other atoms that are excited using optical frequencies. Some of these new clocks are portable. At its QUEST Institute, PTB is currently ...

page 8 from 15