Star Cluster Holds Midweight Black Hole, VLA Indicates

May 28, 2007
The Very Large Array
The Very Large Array CREDIT: NRAO/AUI/NSF

Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have greatly strengthened the case that supermassive black holes at the cores of galaxies may have formed through mergers of smaller black holes. Their VLA studies showed that a globular star cluster in the galaxy M31 probably has a black hole with 20,000 times the mass of the Sun at its core.

"That amount of mass is midway between the black holes left when giant stars explode as supernovae and the supermassive black holes with millions of times the mass of the Sun. It suggests that there is a clear path for forming the supermassive ones through successive mergers of smaller black holes," said James Ulvestad, of the National Radio Astronomy Observatory. Ulvestad, Jenny Greene of Princeton University, and Luis Ho of the Observatories of the Carnegie Institute of Washington presented their findings to the American Astronomical Society's meeting in Honolulu, Hawaii.

Black holes appear to be intimately connected with the formation of massive spherical bulges in galaxies. Astronomers have found a direct relationship between the mass of the black hole in such a galaxy and the mass of its central bulge. However, it is unclear whether small galaxies contain smaller black holes, and their discovery may lead to new insights about the impact of black holes on galaxy formation. As Greene stated, "In recent years, we have been detecting black holes with masses between 100,000 and a few million times the mass of the Sun, but less massive objects have been exceptionally difficult to find."

Based on observations with optical telescopes, Karl Gebhardt of the University of Texas at Austin and his colleagues, which include Ho, suggested in 2002 that the globular cluster G1 in the Andromeda Galaxy (M31) contains a compact concentration of mass that is intermediate in mass between stellar and supermassive black holes. Other researchers disputed that conclusion. According to Ho, "In 2005, we obtained better data that clinched the case that the cluster really does contain a dark object with 20,000 times the mass of the Sun. What we can't be sure of, however, is whether the dark mass is a single object --- that is, an intermediate-mass black hole --- or a cluster of smaller dark objects such as neutron stars or stellar-sized black holes."

"Since this globular cluster, G1, is by far the best candidate for containing such an intermediate-mass black hole, we felt it was important to help resolve the question," Ho added.

Last year, researchers detected X-rays emitted from G1. That allowed Ulvestad and his team to apply a test that could distinguish between an intermediate-mass black hole and the smaller compact objects. Astronomers have found that, for a given X-ray brightness, a supermassive black hole is much brighter at radio wavelengths than a stellar-mass black hole.

Using the VLA, Ulvestad, Greene and Ho found that the radio brightness of G1 was between what would be expected for a stellar-mass black hole and what would be expected for a supermassive one. "The radio brightness nicely fits the prediction for a 20,000-solar-mass black hole," Ulvestad said.

Some globular clusters in our own Milky Way galaxy are suspected to contain black holes with masses just a few hundred times the mass of the Sun. These may be detected when the Expanded VLA, with much greater sensitivity than the current telescope, comes on line soon after 2010. "With this capability, we could close the gap between black holes with masses 10 times that of the Sun and those with masses more than 10,000 times that of the Sun," Ulvestad said. "This should lead to a greater understanding of their importance as stepping stones toward the most massive black holes we observe in the centers of many galaxies."

Source: National Radio Astronomy Observatory

Explore further: POLARBEAR detects curls in the universe's oldest light

add to favorites email to friend print save as pdf

Related Stories

Hungry black hole eats faster than thought possible

Oct 08, 2014

Astronomers have discovered a black hole that is consuming gas from a nearby star 10 times faster than previously thought possible. The black hole—known as P13—lies on the outskirts of the galaxy NGC7793 ...

Composite image shows two black holes orbiting each other

Oct 03, 2014

The image above shows two supermassive black holes orbiting each other. It is a composite image where the blue/white indicates x-rays and the pink indicates radio wavelengths. It may look like they are orbiting ...

Recommended for you

Big black holes can block new stars

17 hours ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

POLARBEAR seeks cosmic answers in microwave polarization

18 hours ago

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

New radio telescope ready to probe

21 hours ago

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

Exomoons Could Be Abundant Sources Of Habitability

Oct 20, 2014

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability. What size planet could host life? How far ...

Partial solar eclipse over the U.S. on Thursday, Oct. 23

Oct 17, 2014

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

User comments : 0