NIST antenna calibrations extended to 60-110 GHz

May 25, 2007

The National Institute of Standards and Technology (NIST) has developed a new "tabletop" sized facility to improve characterization of antennas operating in the 60 to 110 gigahertz (GHz) frequency range. This extended frequency capability serves needs for advanced civilian and military communication and radar systems.

Many electronic systems are moving to higher frequencies to attain higher channel capacity, better spatial resolution and other advantages. The new measurement facility will help accelerate development of technologies such as automobile collision-prevention radars, which operate at 94 GHz and require antennas small enough to be integrated into car bumpers. Improved NIST antenna calibration capability also helps to assure the accuracy of many systems. "NIST is the start of the measurement traceability chain," says Perry Wilson, leader of the Radio Frequency Fields Group. "For instance, we calibrate the probes used by aerospace companies to calibrate instruments launched on satellites and other critical systems. Weather satellites are an example; improvements in antenna accuracy mean better data for weather models, resulting in better weather predictions."

The new facility continues NIST's history of innovation in antenna measurements, building on the "extrapolated gain" technique developed several decades ago. The original extrapolation range and techniques made it practical for researchers to accurately compute an antenna's far-field characteristics based on near-field measurements. By making the range compact, costs are significantly reduced. In addition, the extrapolation technique uses over-sampling and averaging techniques to minimize the effects of scattering and range imperfections.

The tabletop extrapolation range is used to measure the gain (increase in signal power) and polarization (orientation of the electric field) of high-performance antennas. To make measurements, one antenna is fixed on the table and a second is moved along a rail. A laser tracker is used for alignment and positioning. The laser tracker is capable of following a moving target with less than 20 micrometer uncertainty at 1,000 points per second. The range is arranged on an optical table to provide the mechanical isolation and stability necessary to achieve low uncertainties at short wavelengths of radiation. Typical measurement uncertainty for certain types of antennas in the 60 – 110 GHz range approaches that of NIST's existing calibration facilities for antennas operating at lower frequencies (less that 60 GHz).

Source: National Institute of Standards and Technology (NIST)

Explore further: EDAG car with textile skin set for Geneva show

add to favorites email to friend print save as pdf

Related Stories

Uniform nanowire arrays for science and manufacturing

Dec 03, 2014

Defect-free nanowires with diameters in the range of 100 nanometers (nm) hold significant promise for numerous in-demand applications including printable transistors for flexible electronics, high-efficiency ...

New quantum probe enhances electric field measurements

Oct 07, 2014

Researchers at the National Institute of Standards and Technology (NIST) and the University of Michigan have demonstrated a technique based on the quantum properties of atoms that directly links measurements ...

High-tech measurements for high-frequency antennas

Nov 18, 2013

A team of researchers at PML's Antenna Metrology Lab in Boulder, CO has devised a first-of-its-kind system – combining a precision 3-meter industrial robot arm with a metrology-grade laser tracker and other ...

New high standards for emergency wireless devices

Jul 30, 2012

First responders rely increasingly on wireless communication devices, and in emergencies they cannot afford major signal loss or delay caused by attenuation, interference, or reflection. Because lives are ...

Recommended for you

EDAG car with textile skin set for Geneva show

6 minutes ago

Making its debut at the Geneva Motor Show 2015 is the EDAG Light Cocoon. This is promoted as a new dimension for lightweight construction, a sportscar with a textile outer skin panel. The EDAG Light Cocoon ...

Stanford aims to bring player pianos back to life

13 hours ago

(AP)—Stanford University wants to unlock the secrets of the player piano, which brought recorded music into living rooms long before there were cassettes, compact discs or iPods.

Breakthrough capability keeps subs, ships on safe track

Dec 16, 2014

Interactive software that can dramatically cut the time it takes to plan safe submarine missions is crossing over to the surface fleet and is being installed this month on the guided-missile cruiser USS Mobile Bay (CG 53).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.