Scientist finds Martian ice is patchy and variable

May 02, 2007
Scientist finds Martian ice is patchy and variable
This color-coded map indicates the depth to icy layers at a site in southern Mars. The dense, icy layer retains heat better than the looser soil above it, so where the icy layer is closer to the surface, the surface temperature changes more slowly than where the icy layer is buried deeper. Image credit: NASA/JPL/ASU

For the first time, scientists have found that water ice lies at variable depths over small-scale patches on the Red Planet. The discovery draws a much more detailed picture of underground ice on Mars than was previously available. The new results appear in the May 3 issue of the scientific journal Nature.

"We find the top layer of soil has a huge effect on the water ice in the ground," says Joshua Bandfield, a research specialist in Arizona State University's School of Earth and Space Exploration and sole author of the paper. His findings come from data sent back to Earth by the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter.

THEMIS is a sophisticated camera that takes images in 5 visual bands and 10 heat-sensing (infrared) ones. At infrared wavelengths, the smallest details THEMIS can see on the surface are 330 feet (100 meters) wide.

The new results were made using infrared images of several Martian sites, each at a latitude of 60 to 70 degrees, north and south. "These sites are in regions where subsurface water ice is known to exist," Bandfield says.

THEMIS' Sharp View

He explains that water ice lying at shallow depths was first detected and mapped by the Gamma Ray Spectrometer (GRS) suite of instruments, also on Mars Odyssey. But, as Bandfield notes, "the smallest patches detectable by GRS are 300 miles, or 500 kilometers, wide." The new work shows that THEMIS' heat-sensing capability gives scientists a much sharper tool to hunt for buried ice.

"Scientists have known for more than a decade that water is on Mars, mostly in the form of ice," says Philip Christensen of ASU's Mars Space Flight Facility. Christensen, a Regents' Professor of geological sciences at ASU, designed THEMIS but did not participate in this research. "What's exciting is finding out where the ice is in detail and how it got there. We've reached the next level of sophistication in our questions."

Christensen adds, "GRS can probe a meter deep, but it has a giant footprint. Most infrared spectrometers can detect surface ice and ice a few fractions of a millimeter down. THEMIS is sensitive to thermal waves which can penetrate several inches deep – and it can spot details the size of a football field."

Seeking Warmth

Bandfield's approach used THEMIS as a thermometer to measure how fast the ground changed temperature during local spring, summer and fall at the sites. The nature of the surface soil, he says, "makes a big difference in how deep the ice is."

Areas with many rocks at the surface, Bandfield explains, "pump a lot of heat into the ground and increase the depth where you'll find stable ice." In contrast, he says, dusty areas tend to insulate the ice, allowing it to survive closer to the surface. "These two surface materials – rock and dust – vary widely across the ground, giving underground ice a patchy distribution."

Computer models helped him interpret the temperature observations, he says. "They show areas where water ice would be only an inch or so under the soil, while in other areas ice could lie many feet below the surface."

Mars Climate Cycles

Bandfield notes the results fit long-term climatic models for Mars. These show the planet has been both warmer and colder in the past, similar to glacial cycles on Earth.

He says, "The fact that ice is present near the depth of stability in the current Martian climate shows that the ground ice is responding to climate cycles." In turn, he adds, this implies that water ice in the ground can swap places with water vapor in the atmosphere as the climate changes.

Bandfield concludes, "The THEMIS measurements support an active water cycle on Mars such as other research has predicted."

"This work has improved our understanding of the water cycle as part of the ongoing exploration of Mars," says Christensen.

Phoenix: Hunting For Ice

In August 2007, NASA will launch Phoenix, a mission designed to sample Martian ground ice directly. The Phoenix spacecraft is a non-roving lander that will go to a high-latitude site in Mars' northern hemisphere. Upon landing, it will expose buried ice by scraping away the soil. After collecting a sample of icy soil, Phoenix will analyze its qualities as a possible habitat for microbial life.

Says Bandfield, "The take-home message for the Phoenix lander is that the THEMIS results show a lot of patchiness in the ground ice, and this should continue down to smaller and smaller scales."

Phoenix, he adds, "may find ground ice is shallower and much easier to reach in some spots than in others."

Source: Arizona State University

Explore further: Curiosity brushes 'Bonanza king' target anticipating fourth red planet rock drilling

add to favorites email to friend print save as pdf

Related Stories

Snow has thinned on Arctic sea ice

Aug 13, 2014

From research stations drifting on ice floes to high-tech aircraft radar, scientists have been tracking the depth of snow that accumulates on Arctic sea ice for almost a century. Now that people are more ...

Fingers crossed as comet-chaser nears end of trek

Aug 06, 2014

European scientists were preparing for a historic rendezvous on Wednesday between a comet and a space probe after a 10-year, six billion-kilometre (3.7-billion-mile) chase through the Solar System.

Melt ponds shine in NASA laser altimeter flight images

Aug 05, 2014

Even from 65,000 feet above Earth, aquamarine melt ponds in the Arctic stand out against the white sea ice and ice sheets. These ponds form every summer, as snow that built up on the ice melts, creating crystal ...

Rosetta measures comet's temperature

Aug 01, 2014

(Phys.org) —ESA's Rosetta spacecraft has made its first temperature measurements of its target comet, finding that it is too hot to be covered in ice and must instead have a dark, dusty crust.

Recommended for you

Australian amateur Terry Lovejoy discovers new comet

11 hours ago

It's confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof ...

Students see world from station crew's point of view

Aug 19, 2014

NASA is helping students examine their home planet from space without ever leaving the ground, giving them a global perspective by going beyond a map attached to a sphere on a pedestal. The Sally Ride Earth ...

Mars deep down

Aug 19, 2014

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

User comments : 0