Revamped experiment could detect elusive particle, physicists say

Apr 24, 2007

An experiment called "shining light through walls" would seem hard to improve upon. But University of Florida physicists have proposed a way to do just that, a step they say considerably improves the chance of detecting one of the universe's most elusive particles, a candidate for the common but mysterious dark matter.

In a paper that appears online today in the journal Physical Review Letters, physicists at the University of Florida and Lawrence Livermore National Laboratory propose a redesign of the experiment currently being attempted in various forms by several groups of physicists worldwide. Although theoretical at the moment, they say their design could make such experiments a billion times more sensitive in their goal of detecting axions.

Axions are elemental particles whose confirmation would shed light on several different conundrums in particle physics. These could include pinning down the nature of dark matter, the mysterious substance said to make up 30 percent of the universe but so far observed only indirectly by its effects.

"A half dozen groups want to do this experiment, and some of them probably will try this approach," said Pierre Sikivie, a faculty member in UF's physics department and an author of the paper. "It works in principle, but in reality it will take some effort to set this up right so that it can produce a result."

The unimproved experiment seeks to detect axions by shining a laser down the bore of a powerful superconducting magnet. A wall in the middle stops the laser cold, with the theoretical axions continuing through the wall and into the other side of the magnet. There, the magnet reconverts them into photons, or particles of light.

The detection of this light "reappearing" on the other side of the wall is what gives the experiment its iconic name.

Researchers in the U.S. and Europe are in various stages of conducting the experiment. The activity has been stimulated by a recent Italian experiment that claims to have discovered axion-like particles. The hope is to confirm the Legnaro National Laboratories' results or take them a step further.

Sikivie, UF physics professor David Tanner and Karl van Bibber, a physicist at the Lawrence Livermore National Laboratory, propose a redesign of the "shining light through walls" experiment to make it, in their words, "vastly more sensitive."

In a nutshell, they suggest placing pairs of highly reflective mirrors called Fabry-Perots cavities on both sides of the wall. The cavity on the laser light side of the wall would cause the light to bounce back and forth repeatedly, as though in an echo chamber. This action would produce many more of the hypothesized axions than a single beam of light, making them easier to detect on the other side of the wall.

"What happens is, because the light goes back and forth many times as it goes through the magnet, it produces more axions," Sikivie said.

The Fabry-Perot cavity on the other side of the wall would perform a similar function, producing even more photons from the added axions.

Sikivie said researchers are doing separate experiments to detect axions produced by the sun, which would seem to be an easier approach because the sun is a much more powerful source than any laser. But the modified experiment would at least in theory have a higher sensitivity than these solar-based experiments.

"With these two cavities on both sides, it actually gets better, by a factor of 10 maybe, than the solar axion experiments," he said.

Source: University of Florida

Explore further: Exploring X-ray phase tomography with synchrotron radiation

add to favorites email to friend print save as pdf

Related Stories

Catholic bishops in 'seismic' opening toward gays

Oct 13, 2014

(AP)—Gay rights groups hailed a "seismic shift" by the Catholic Church toward gays on Monday after bishops said homosexuals had gifts to offer the church and that their partnerships, while morally problematic, ...

'T-rays' to shed light on nuclear fusion

Oct 09, 2014

In the race to secure clean energy in the future, Lancaster University Engineers are reinventing a piece of technology which so far has only been used in labs to diagnose cancer, detect explosives, and even analyse grand ...

Superhuman vision

Oct 07, 2014

All through his childhood, Ramesh Raskar wished fervently for eyes in the back of his head. "I had the notion that the world did not exist if I wasn't looking at it, so I would constantly turn around to see ...

Under Rainier's crater, a natural laboratory like no other

Oct 03, 2014

Counting all the ups and downs, he had climbed more than 15,000 feet to get here - past yawning crevasses and over cliffs where a single misstep could send a rope team tumbling. His party was pummeled by a lightning storm ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

2 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

2 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

3 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0