4 universities collaborate to synthesize new materials, nanoscale devices

Apr 24, 2007

The Army Research Office has awarded a potentially $7.5 million Multi-University Research Initiative (MURI) grant to scientists from Virginia Tech, the University of Pennsylvanian, Pennsylvania State University, and Drexel University to develop electromechanical devices and high-performance membranes using ionic liquids.

Virginia Tech chemistry professor Tim Long and University of Pennsylvania professor of materials science and engineering Karen I. Winey are co-directors of the Ionic Liquids in Electro-Active Devices (ILEAD) MURI. Long is principal investigator.

Ionic liquids (ILs) are relatively large organic salts that offer charge and liquidity at room temperature. Some ILs are touted as safe, environmentally-friendly solvents. They are also useful in electrically conductive membranes, thermally stable at high temperatures, and do not evaporate at normal conditions. With today’s advanced ability to manipulate molecular structure and design unique molecules, ILs’ advantages are being explored for emerging applications. "The Army needs a myriad of electronic devices that take advantage of the potential synergy of these unique properties," Long said.

The team is creating synthetic ILs and evaluating their performance in sophisticated electronic devices. "Our challenge is to synthesize high performance materials with a particular device in mind. Then the device is truly created from the molecular-scale up," said Long.

The group will integrate ILs into membranes to create thin films to perform various functions, such as membranes that can transport or filter small molecules. "Applications include fuel cell membranes, where protons are transported across a membrane to create electricity. One advantage over existing fuel cell materials is that the IL will not evaporate, so future membranes will operate at higher temperatures with higher efficiency."

Another application could be stimuli-responsive materials for micro sensors and smart clothes, said Long. "The material would breathe and wick moisture away, but quickly close up in response to a chemical or biological threat. Such a suit could be used by the military, by a firefighter, or in an operating room."

Membranes can also be created that will bend, stretch, or change shape in response to a low voltage, like an artificial muscle.

And ILs can be used in coatings or as part of structures. The team will look at creating new polymeric materials that can be charged or conductive, Long said.

"ILs will serve as the building blocks for elastomers, fibers, and rigid plastics for such uses as protective gear and multilayer assemblies," Long said. "We are recharging a field that has been around for a couple of decades because now we are challenged with applications that require IL performance."

The MURI is charged to provide fundamental enabling science for future Army technologies.

Senior researchers will focus in three areas. Long and Virginia Tech chemistry professor Harry W. Gibson will work on synthesis of ILs and charged polymers. Winey and Penn State professor of materials science and engineering Ralph H. Colby will do mechanical, electrical, and morphological characterization. Yossef Elabd, professor of chemical and biological engineering at Drexel University; Virginia Tech physics professor Randy Heflin; and Qiming Zhang, distinguished professor of electrical engineering at Penn State, will research performance of actuators, electro-optical devices, and membranes. Virginia Tech and Drexel are both Army Materials Centers of Excellence.

Source: Virginia Tech

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Researchers bring clean energy a step closer

7 hours ago

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

Mutant bacteria that keep on growing

Feb 18, 2015

The typical Escherichia coli, the laboratory rat of microbiology, is a tiny 1-2 thousandths of a millimeter long. Now, by blocking cell division, two researchers at Concordia University in Montreal have g ...

Engineers put the 'squeeze' on human stem cells

Feb 10, 2015

After using optical tweezers to squeeze a tiny bead attached to the outside of a human stem cell, researchers now know how mechanical forces can trigger a key signaling pathway in the cells.

Nano-hydrogels that attack cancer cells

Feb 06, 2015

Hydrogels are materials that are commonly used in everyday objects such as contact lenses or diapers, in order to control humidity. However, chemical engineers at the University of Guadalajara (UdeG), in ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.