From silicon to the sea: Managing heat aboard modern ships

Apr 16, 2007
From silicon to the sea: Managing heat aboard modern ships
Researchers use micro-channels like these to analyze boiling heat transfer and cooling effects. Credit: Rensselaer/Chih-Jung Kuo

With a major grant from the Office of Naval Affairs, researchers at Rensselaer Polytechnic Institute are collaborating with four other universities to address a hot topic in today's military: how to keep modern ships cool in extreme environments.

Led by the University of Virginia and funded under the Department of Defense Multidisciplinary University Research Initiative (MURI) program, the overall research aim will be to develop cooling techniques that can be used for thermal management of large-scale, distributed high-power electronic systems. The project is funded by a $7.5 million grant.

In today's modern warfront, sailors and other military personnel are asked to operate more advanced electronics in hotter climates. Modern military ships, offices, and planes have thousands of computers, lights, and other electronics whirring and working at once, generating extremely high temperatures that require advanced cooling systems.

Because of the increasing power levels of today's electronics, and the need for these systems to operate at super-fast speeds in extreme environments, researchers need to find new cooling methods to lengthen the life of electronics and increase system performance, according to Michael Jensen, professor of mechanical, aerospace, and nuclear engineering and project manager for Rensselaer's part of the project.

The researchers involved in the cross-university collaboration will work to develop thermal management techniques that reduce device temperatures below 50 degrees Celsius. To do this, each of the universities will use their research strengths, handling different research thrusts that will later be integrated to help develop the next generation of ultra-efficient electronic systems.

“We are looking to make fundamental advancements in thermal regulation of electronic systems, from pinky-nail-sized chips to an entire computer server farm at a high-tech company or a 500-foot Navy ship," Jensen said.

Rensselaer will lead the research thrust examining the potential of using liquids to cool electronic systems. They will focus on interactions at the interface between hot electronic circuitry and a liquid, as well as determining how to integrate and manage the cooling of thousands of heat-generating sources distributed over a wide area.

“We are reaching the limit of what we can do with air cooling of new computer chips," Jensen said. “We are now looking at liquid cooling as an alternative method to cool electronic circuitry."

Rensselaer researchers will work to uncover the mechanisms that govern fluid flow and heat transfer in novel electronic cooling systems. As part of that process they will examine the flow and cooling levels of different liquids through micro-devices. This will help them develop modifications to material surface chemistry and structure, understand ideal microchannel configurations and examine the use of nanoparticle suspensions within liquid coolants to improve overall cooling.

Rensselaer also will play a major role in a thrust to design a large-scale thermal system simulator. The simulator will create models of different distributed heat sources and cooling systems and permit researchers to model and control the cooling of a system over time, allowing the military to test cooling techniques prior to implementation.

Source: Rensselaer Polytechnic Institute

Explore further: Creative adaptation of a quadcopter

add to favorites email to friend print save as pdf

Related Stories

Sapphire talk enlivens guesswork over iPhone 6

6 hours ago

Sapphire screens for the next iPhone? Sapphire is second only to diamond in hardness scratch-proof properties, used in making LEDs, missiles sensors, and on screens for luxury-tier phones. Last year, the ...

The source of the sky's X-ray glow

9 hours ago

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

Recommended for you

Tesla says decision on battery factory months away

6 hours ago

(AP)—Electric car maker Tesla Motors said Thursday that it is preparing a site near Reno, Nevada, as a possible location for its new battery factory, but is still evaluating other sites.

Comfortable climate indoors with porous glass

Jul 31, 2014

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

Jul 31, 2014

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

Jul 31, 2014

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

User comments : 0