Mass weddings -- NIST's new efficient 2-photon source

Apr 12, 2007
Mass weddings -- NIST's new efficient 2-photon source
A microstructured optical fiber in NIST's new paired-photon source delivers high numbers of photon pairs over a broad bandwidth with low noise, all in a compact device for quantum communication devices. Credit: Migdall/NIST

For a variety of applications in physics and technology, ranging from quantum information theory to telecommunications, it’s handy to have access to pairs of photons created simultaneously, with a chosen energy. In a significant improvement on previous designs, physicists at the National Institute of Standards and Technology have devised a system that delivers such pairs with great efficiency over a wide range of energy, and with very little noise from extraneous photons.

Paired photons can be generated—albeit very inefficiently—in standard optical media such as glass optical fibers. Photons normally travel through glass independently, without interacting, but if monochromatic laser light is sent down even an ordinary optical fiber, very occasionally two of the input photons will interact, producing an output photon pair with one higher in energy than the original photons and the other lower by the same amount.

Because the vast majority of photons go through the fiber unchanged, the relative intensity of these pairs is very small. Worse, the fiber generates the pairs randomly with a range of possible energies, so picking out those with some specific energy reduces the number of useful photon pairs still further. Worse yet, there is noise in the system due to the phenomenon called "Raman scattering," in which individual photons bounce off the fiber’s molecular structure and change their energies. Scattering produces photons that look as if they might be one half of a pair, but aren’t.

To beat these odds, the new NIST two-photon source relies on a microstructured optical fiber. The fiber has a slender glass core at the center of an array of hollow channels, giving it a honeycomb appearance in cross-section. The geometrical structure of the fiber tightly restricts the way light can travel down it, increasing the intensity of light in the thin central core. Higher intensity means that photons are crowded more densely together, making events such as pair production more likely.

That greater efficiency allows the NIST researchers to get significant production of photon pairs by sending laser light through a mere 1.8 meters of the microstructured fiber, in contrast to the hundreds of meters of ordinary fiber that might be used in other systems. In addition, modifying the size of the channels in the microstructured fiber allows its properties to be optimized to reduce the amount of Raman scattering relative to the two-photon light of interest. The result is a source that produces significantly more pairs of photons over a wide frequency range, and with greatly reduced contamination by spurious Raman photons.

Photon pairs from the new source could be useful, for example, in exploring quantum "entanglement," in which measurements on one of a pair of quantum particles with a common origin exert a subtle influence on the properties of the other, or in quantum cryptography.

Citations: J. Fan and A. Migdall. A broadband high spectral brightness fiber-based two-photon source. Optics Express 15, 2915 (2007).
J. Fan, A. Migdall and L. Wang. A twin photon source based on optical fiber. Optics and Photonics News. March, 2007.

Source: National Institute of Standards and Technology

Explore further: Breakthrough in OLED technology

add to favorites email to friend print save as pdf

Related Stories

Google hits back at rivals with futuristic HQ plan

5 hours ago

Google unveiled plans Friday for a new campus headquarters integrating wildlife and sweeping waterways, aiming to make a big statement in Silicon Valley—which is already seeing ambitious projects from Apple ...

Recommended for you

Breakthrough in OLED technology

1 hour ago

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

4 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.