Negative Refraction of Visible Light Demonstrated; Could Lead to Cloaking Devices

Mar 23, 2007

For the first time, physicists have devised a way to make visible light travel in the opposite direction that it normally bends when passing from one material to another, like from air through water or glass. The phenomenon is known as negative refraction and could in principle be used to construct optical microscopes for imaging things as small as molecules, and even to create cloaking devices for rendering objects invisible.

In the March 22 in the online publication Science Express, California Institute of Technology applied physics researchers Henri Lezec, Jennifer Dionne, and Professor Harry Atwater, will report their success in constructing a nanofabricated photonic material that creates a negative index of refraction in the blue-green region of the visible spectrum. Lezec is a visiting associate in Atwater's Caltech lab, and Dionne is a graduate student in applied physics.

According to Lezec, the key to understanding the technology is first in understanding how light normally bends when it passes from one medium to another. If a pencil is placed in a glass of water at an angle, for example, it appears to bend upward and outward if we look into the water from a vantage point above the surface. This effect is due to the wave nature of light and the normal tendency of different materials to disperse light in different ways-in this case, the materials being the air outside the glass and the water inside it.

However, physicists have thought that, if new optical materials could be constructed at the nanoscale level in a certain way, it might be possible to make the light bend at the same angle, but in the opposite direction. In other words, the pencil angled into the water would appear to bend backward as we looked at it.

The details are complicated, but have to do with the speed of light through the material itself. Researchers in recent years have created materials with negative diffraction for microwave and infrared frequencies. These achievements have exploited the relatively long wavelengths at those frequencies--the wavelength of microwaves being a few centimeters, and that of infrared frequencies about the width of a human hair. Visible light, because its wavelength is at microscopic dimensions--about one-hundredth the width of a hair--has defeated this conventional approach.

Dionne, one of the lead authors, says that the breakthrough is made possible by the Atwater lab's work on plasmonics, an emerging field that "squeezes" light with specially designed materials to create a wave known as a plasmon. In this case, the plasmons act in a manner somewhat similar to a wave carrying ripples across the surface of a lake, carrying light along the silver-coated surface of a silicon-nitride material, and then across a nanoscale gold prism so that the light reenters the silicon-nitride layer with negative refraction.

Thus, the process is not the same as the one used for negative refraction of microwaves and infrared radiation, but it still works, says Dionne. And this discovery is particularly exciting because visible light, as its name suggests, is the wavelength associated with the world of objects we see, provided they are not too small.

"Maybe you could create a superlens that can beat the diffraction limit," says Dionne. "You might be able to see DNA and protein molecules clearly just by looking at them, without having to use a more complicated method like X-ray crystallography."

Atwater, who is the Howard Hughes Professor and professor of applied physics and materials science at Caltech, says the plasmonic technique indeed has potential for a compact "perfect lens" that could have a huge number of biomedical and other technological applications. "Once the light coming from a nearby object passes through the negative-refraction material, it would be possible to recover all the spatial information," he says, adding that the loss of this information is why there is ordinarily a limit to the size of an object that can be seen in a microscope.

Even more tantalizing is the possibility of an optical "invisibility cloak" device that would surround an object and bend light in such a way that it would be perfectly refocused on the opposite side. This would provide perfect invisibility for the object inside the cloak, in a manner similar to the cloaks used by Harry Potter or the Klingons in the old Star Trek television series.

"Of course, anyone inside the cloak would not be able to see out," Atwater says.

"But maybe you could have some small windows," Dionne adds.

Source: Caltech

Explore further: Infrared imaging technique operates at high temperatures

add to favorites email to friend print save as pdf

Related Stories

Metamaterial prism creates a reverse rainbow

Jan 09, 2015

(Phys.org)—In a normal rainbow, red is always on "top" while violet is on the "bottom." This is true whether the rainbow is created by a glass prism or by water droplets in the sky, and is due to the way ...

Shedding light on why blue LEDs are so tricky to make

Jan 07, 2015

Scientists at University College London, in collaboration with groups at the University of Bath and the Daresbury Laboratory, have uncovered the mystery of why blue light-emitting diodes (LEDs) are so difficult to make, by ...

Ultrasounds dance the 'moonwalk' in new metamaterial

Dec 23, 2014

Metamaterials have extraordinary properties when it comes to diverting and controlling waves, especially sound and light: for instance, they can make an object invisible, or increase the resolving power of ...

Recommended for you

Infrared imaging technique operates at high temperatures

Jan 23, 2015

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming ...

Football physics and the science of Deflategate

Jan 23, 2015

News reports say that 11 of the 12 game balls used by the New England Patriots in their AFC championship game against the Indianapolis Colts were deflated, showing about 2 pounds per square inch (psi) less ...

Physicists find a new way to slow the speed of light

Jan 23, 2015

(Phys.org)—A team of physicists working at the University of Glasgow has found a way to slow the speed of light that does not involve running it through a medium such as glass or water. Instead, as they ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

lengould100
not rated yet Jun 25, 2008
"adding that the loss of this (spatial) information is why there is ordinarily a limit to the size of an object that can be seen in a microscope. "

I thought it had more to do with the fact that wave-fronts of visible light are significantly larger than molecules or atoms. Trying to learn the characteristics of a teacup-sized object is a lot easier by probing it with a pencil than by probing it with a telephone pole.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.