Researchers unveil details of chip cooling breakthrough

Mar 22, 2007
Schematic of the interface technology and cooling system. The image shows a cross-sectional schematic of the cooling architecture using the branched channel design. A highly viscous paste is brought between the chip cap and the hot chip in order to reduce the thermal resistance. Thanks to the tree-like branched "trenches" in the copper cap, the paste spreads very homogeneously and attains a thickness of less than 10 micrometers. With this technique, only half the pressure is needed to apply the paste and a twofold increase in cooling performance can be achieved. Credit: IBM

At the IEEE Semi-Therm Conference 2007, IBM researchers unveiled details of a new technique to significantly increase capabilities to cool computer chips.

The technique, developed by a team of scientists at the IBM Zurich Research Laboratory in cooperation with Momentive Performance Materials, formerly GE Advanced Materials, overcomes a barrier in chip cooling by improving the application of the "glue" that binds chips to their cooling systems. The new technology could allow faster computer chips to be cooled more efficiently.

Researchers unveil details of chip cooling breakthrough
The right-hand image shows the paste after being applied using the new technology. The pattern arises from the hierarchical channel design of the interface that controls and optimizes the spread of the paste. The schematic on the left shows the hierarchical microchannel design for a 14-mm chip. Solid lines represent the first-level hierarchy, which is 220 micrometers wide, long-dashed lines = 150 micrometers width, short-dashed lines = 150 micrometers width. An example of a third-level channel design is shown in the upper left-most cell. Credit: IBM

In today's computer chips, as the circuits on chips become increasingly smaller, chips generate more heat than ever before. To remove the heat from the chip, a cooling system is attached to the microprocessor using a special adhesive or glue. This glue is necessary to bind the two systems together, yet it poses a real barrier in heat transport.

To improve the glue's heat-conducting properties, it is enriched with micrometer-sized metal or ceramic particles. These particles form clusters that build "heat-evacuation bridges" from the chip to the cooler to compensate for the glue's shortcomings. However, even highly particle-filled pastes are still inefficient, consuming up to 40 percent of the overall thermal budget, i.e. the cooling capacity available to draw heat away from the chip.

IBM researchers now unveiled the reason and presented a novel technique to solve this problem. By observing how the glue spreads when a chip is attached to its cooling element, scientists noticed that a cross formed in the paste as large numbers of particles were piling up, inhibiting the layers of glue from spreading out. The scientists were able to trace the cause of this back to the flow behavior of the paste, which simply follows the path of least resistance. Along the diagonals, the particles are pulled in opposite directions and, as a result, they remain where they are. As the squeezing process continues, however, they begin to pile up, forming what scientists call the "magic cross".

To overcome this problem, the team designed a special layout of micrometer-sized channels — or trenches — in a tree-like branched structure consisting of larger and smaller channels. This structure functions like an irrigation system for the paste at exactly those spots where the particles would pile up. This allows the particles to spread more homogeneously and reduces the thickness of the resulting paste gap.

The results obtained are impressive: The paste thickness was reduced by a factor of 3, and the pressure needed to squeeze the paste to the same bondline thickness was reduced to a similar extent. These lower assembly pressures ensure that the delicate components and interconnects below the chip are not damaged as the chip package is created. The channels also allow pastes with higher fill factors and higher bulk thermal conductivity to be squeezed into thinner gaps, thereby reducing the thermal resistance of the paste interface considerably by more than a factor of 3. The new technology allows air-cooling systems to remove more heat and helps to improve the overall energy efficiency of computers.

To further optimize the technology in real cooling systems and to demonstrate its feasibility, the IBM team cooperated with paste manufacturer Momentive Performance Materials, Wilton, CT, USA.

Together with other industry-leading suppliers, tools are being developed to define the surface channels through the same copper stamping process currently used to fabricate high-volume chip lids. This will define a full supply chain of low-cost parts to quickly integrate the new technique into products.

The work entitled "Hierarchical Nested Surface Channels for Reduced Particle Stacking and Low-Resistance Thermal Interfaces" by R. J. Linderman, T. Brunschwiler, U. Kloter, H. Toy, B. Michel will be published in Proc. 23rd IEEE Semi-Therm Symp. 2007.

Source: IBM

Explore further: 3-D-printable materials deform to change surface area, enabling curvature rather than rigid folding

add to favorites email to friend print save as pdf

Related Stories

Gamers' funding fuels meteoric rise of 'Star Citizen'

Oct 30, 2014

Chris Roberts' brain spun out a grand vision: a rich, immersive galaxy; exquisite spaceships traversing between infinite star systems with thousands of computer gamers manning the cockpits, racing, dogfighting and defending ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Stressing out copper TSVs with temperature

Sep 25, 2014

In the past, microelectronics were essentially a two-dimensional affair based upon flat integrated circuit chips connected to each other. Then, engineers opened up the third dimension, with integrated circuit ...

Edible insects a boon to Thailand's farmers

Aug 25, 2014

Depending solely on the rains to either yield a good rice crop or leave their fields dry and barren, farmers in this village in northeastern Thailand, the country's poorest region, led a precarious and back-breaking ...

Recommended for you

Fully automated: Thousands of blood samples every hour

2 hours ago

Siemens is supplying automation technology for the longest and one of the most cutting-edge sample processing lines in any clinical laboratory. The line, or automation track, 200 meters long, in Marlborough, ...

Explainer: What is 4-D printing?

2 hours ago

Additive manufacturing – or 3D printing – is 30 years old this year. Today, it's found not just in industry but in households, as the price of 3D printers has fallen below US$1,000. Knowing you can p ...

First series production vehicle with software control

3 hours ago

Siemens has unveiled the first electric series production vehicle with the central electronics and software architecture RACE. This technology, developed in the research project of the same name, replaces ...

Amputee puts limb system through its paces

5 hours ago

"Amputee Makes History with APL's Modular Prosthetic Limb" is the headline from Johns Hopkins Applied Physics Laboratory, where a team working on prosthetics observed a milestone when a double amputee showed ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.