Scientists develop new terahertz material

Mar 15, 2007

Researchers at Los Alamos National Laboratory have created a device for manipulating terahertz (THz) radiation. The device could be the basis for novel electronics and photonics applications ranging from new imaging methods to advanced communication technologies. The THz range of the electromagnetic spectrum lies between the infrared and microwave wavelengths.

In research published in the journal Nature, Los Alamos scientist Hou-Tong Chen and his colleagues explain how metamaterials (artificial materials with properties derived from their sub-wavelength structures instead of their compositions) can be designed to efficiently control THz waves.

According to Chen, "devices that generate and detect THz radiation are already in development, but techniques to actually control the waves are lagging behind. This is the next logical step in the development of terahertz technologies for wider electronics and photonics applications."

Like microwaves, terahertz radiation has the ability to penetrate a wide variety of non-conducting materials like paper, plastics, wood, and ceramics. Because it can "see" through plastics and cardboard, it might also be used in manufacturing to inspect packaged objects for quality control or process monitoring. THz radiation is sensitive to the water content, which means it might be used to detect differences in body tissue density. Because terahertz radiation is non-ionizing, it does not damage DNA like X-rays and might someday be used as a safer alternative for certain types of medical and dental imaging. Non-ionizing means the radiation does not have enough energy to convert electrically neutral atoms into ions by knocking an atom's electron from its orbit.

To create their device, Chen and his colleagues used micro-fabrication processes to lay down an array of gold metamaterial structures over a semiconductor substrate. An applied voltage between the substrate and the metamaterial enables the device to modulate the intensity of THz waves by up to 50 percent. The experimental demonstration of the device exceeds the performance of existing electrical THz modulators and the team hopes to further improve the device's performance in coming months.

In addition to Chen, other members of the THz device development team include Willie Padilla, formerly of Los Alamos and now with Boston College, Richard Averitt, formerly of Los Alamos and now with Boston University, Antoinette Taylor from Los Alamos, and Joshua Zide and Arthur Gossard from the University of California, Santa Barbara. The research was supported by Laboratory Directed Research and Development funds and the Center for Integrated Nanotechnologies, a DOE/Office of Science Nanoscale Research Center.

Source: Los Alamos National Laboratory

Explore further: New complex oxides could advance memory devices

add to favorites email to friend print save as pdf

Related Stories

Team develops new metamaterial device

Feb 24, 2009

An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according ...

Visualizing atomic-scale acoustic wavesin nanostructures

Jul 03, 2008

Acoustic waves play many everyday roles - from communication between people to ultrasound imaging. Now the highest frequency acoustic waves in materials, with nearly atomic-scale wavelengths, promise to be ...

Recommended for you

New complex oxides could advance memory devices

Sep 17, 2014

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

Mechanical behavior of twinned aluminum revealed

Sep 15, 2014

A research group has discovered plasticity and work-hardening behaviors in twinned aluminum with incoherent twin boundaries by using in situ nanoindentation technique. The group's paper titled "In situ nanoindentation ...

Invisibility cloaks closer thanks to 'digital metamaterials'

Sep 15, 2014

The concept of "digital metamaterials" – a simple way of designing metamaterials with bizarre optical properties that could hasten the development of devices such as invisibility cloaks and superlenses – is reported in a paper published today in Nature ...

User comments : 0