Monitoring with minimum power

Feb 21, 2007

A new communication protocol for wireless sensor networks just released by the Viterbi School's Information Sciences Institute is the most efficient yet with more than a tenfold improvement on previous versions.

Sensornets – an emerging way to monitor inaccessible and unwired places – depend on placing numerous sensor units across a wide area. The units communicate with each other, sending the information they gather at intervals to the human operators.

In wilderness parks, for example, such networks are used to monitor activity by wildlife. Sensornets are also being explored for industrial applications such as oilfield monitoring and management.

Because the units are battery-powered, minimum power consumption is critical – but at the same time, continuing coverage is essential. Ordinary wireless methods such as WiFi won't work because of this limitation.

The activities of the units are orchestrated by special operating rules called Media Access Control protocols. More than three years of ISI research – supported by the National Science Foundation, Intel and other funders – produced a new protocol, SCP-MAC, which marked a dramatic improvement in energy efficiency.

The protocol combines two techniques: “low-power listening,” in which units switch on for only very brief periods; and “scheduled channel polling,” which synchronizes and schedules the listening.

“The basic approach of SCP-MAC is to let units alternate periods of sleeping with very brief periods of listening, as shown in the figure,” said ISI research scientist and project developer Wei Ye. “Such a sleep pattern is found on birds, who need to keep vigilance while sleeping. To minimize the listening cost, SCP-MAC utilizes ‘low-power listening,’ which detects channel activity very quickly.”

It further reduces the transmission cost, Ye explained, by synchronizing the listening schedules of nodes, so that a unit can wake up its neighbors by transmitting a short tone.

Previous protocols required individual units to be active for approximately 2 to 3 percent of monitoring time – that is, about 29-45 minutes of sensornet activity every day. SCP-MAC reduced the monitoring time to less than two minutes each day.

The system was developed by Ye, who worked with project leader John Heidemann and programmer Fabio Luis Silva in the ISI Laboratory for Embedded Networked Sensor Experimentation.

In February, the group made the new protocol available for download by sensornet users and developers at www.isi.edu/ilense/software/scpmac/

Source: University of Southern California

Explore further: Students design 'nested' dumpster to slash shipping costs

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Finnish inventor rethinks design of the axe

4 hours ago

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

User comments : 0

More news stories

TCS, Mitsubishi to create new Japan IT services firm

India's biggest outsourcing firm Tata Consultancy Services (TCS) and Japan's Mitsubishi Corp said Monday they are teaming up to create a Japanese software services provider with annual revenues of $600 million.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...