Monitoring with minimum power

Feb 21, 2007

A new communication protocol for wireless sensor networks just released by the Viterbi School's Information Sciences Institute is the most efficient yet with more than a tenfold improvement on previous versions.

Sensornets – an emerging way to monitor inaccessible and unwired places – depend on placing numerous sensor units across a wide area. The units communicate with each other, sending the information they gather at intervals to the human operators.

In wilderness parks, for example, such networks are used to monitor activity by wildlife. Sensornets are also being explored for industrial applications such as oilfield monitoring and management.

Because the units are battery-powered, minimum power consumption is critical – but at the same time, continuing coverage is essential. Ordinary wireless methods such as WiFi won't work because of this limitation.

The activities of the units are orchestrated by special operating rules called Media Access Control protocols. More than three years of ISI research – supported by the National Science Foundation, Intel and other funders – produced a new protocol, SCP-MAC, which marked a dramatic improvement in energy efficiency.

The protocol combines two techniques: “low-power listening,” in which units switch on for only very brief periods; and “scheduled channel polling,” which synchronizes and schedules the listening.

“The basic approach of SCP-MAC is to let units alternate periods of sleeping with very brief periods of listening, as shown in the figure,” said ISI research scientist and project developer Wei Ye. “Such a sleep pattern is found on birds, who need to keep vigilance while sleeping. To minimize the listening cost, SCP-MAC utilizes ‘low-power listening,’ which detects channel activity very quickly.”

It further reduces the transmission cost, Ye explained, by synchronizing the listening schedules of nodes, so that a unit can wake up its neighbors by transmitting a short tone.

Previous protocols required individual units to be active for approximately 2 to 3 percent of monitoring time – that is, about 29-45 minutes of sensornet activity every day. SCP-MAC reduced the monitoring time to less than two minutes each day.

The system was developed by Ye, who worked with project leader John Heidemann and programmer Fabio Luis Silva in the ISI Laboratory for Embedded Networked Sensor Experimentation.

In February, the group made the new protocol available for download by sensornet users and developers at www.isi.edu/ilense/software/scpmac/

Source: University of Southern California

Explore further: High-precision radar for the steel industry

add to favorites email to friend print save as pdf

Related Stories

Looking for alternatives to antibiotics

18 minutes ago

Bacteria that talk to one another and organize themselves into biofilms are more resistant to antibiotics. Researchers are now working to develop drugs that prevent bacteria from communicating.

Massive hydroelectric lagoon planned off Wales

19 minutes ago

A British firm on Monday launched plans to build a giant lagoon off the southern Welsh coast that would harness the tide to provide electricity for the whole of Wales.

Recommended for you

Personalized factory workstations

13 hours ago

Tomorrow's factory jobs will be completely different from those of today. Although they will continue to be organized around assembly stations, they will not work in rigid shifts, be subject to inflexible ...

High-precision radar for the steel industry

14 hours ago

Steel is the most important material in vehicle and machinery construction. Large quantities of offcuts and scraps are left over from rolling and milling crude steel into strip steel. New radar from Fraunhofer ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.