Crystal clues to better batteries

Feb 19, 2007
Crystal clues to better batteries
Crystals of sodium cobaltate grown at the Clarendon Laboratory. Credit: Stuart Bebb, Oxford University’s Department of Physics.

Longer-lasting laptop and mobile phone batteries could be a step closer thanks to research by scientists at the University of Oxford.

Researchers from Oxford’s Department of Physics are part of an international team investigating sodium cobaltate: a material similar in structure to the lithium cobaltate used in rechargeable batteries for many electronic devices.

In a recent Nature paper the team describe the patterning of ions in sodium cobaltate– observations that are helping to unlock the secrets of how ions move around inside the electrodes of lithium-based batteries. Their findings could lead to improvements in battery design.

Vital to their success were the very high quality single crystals of sodium cobaltate grown by Dr D Prabhakaran in the Clarendon Laboratory. ‘The hardest part was learning how to control the concentration of sodium in the crystals,’ Dr Prabhakaran said. ‘I achieved this by using a special type of floating-zone furnace that allows the growth of crystals in a high-pressure atmosphere and reduces the evaporation of sodium.’ These samples were then bombarded with neutrons to reveal how the sodium ions were arranged.

Professor Andrew Boothroyd, a member of the Oxford team, said: ‘If you want to engineer new materials with improved properties you need to know how they work. Knowing the forces which drive the sodium ion ordering we can start to understand how the ions move through the structure and explain many of the observed electrical and magnetic properties of this fascinating material – such as a superconducting phase that only develops after you immerse it in water.’

Source: Oxford University

Explore further: Strongly interacting electrons turn oxide interfaces into magnetically controlled and extra-efficient solar cells

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Three-dimensional metamaterials with a natural bent

Oct 24, 2014

Metamaterials, a hot area of research today, are artificial materials engineered with resonant elements to display properties that are not found in natural materials. By organizing materials in a specific way, scientists ...

Wild molecular interactions in a new hydrogen mixture

Oct 20, 2014

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

User comments : 0