Crystal clues to better batteries

Feb 19, 2007
Crystal clues to better batteries
Crystals of sodium cobaltate grown at the Clarendon Laboratory. Credit: Stuart Bebb, Oxford University’s Department of Physics.

Longer-lasting laptop and mobile phone batteries could be a step closer thanks to research by scientists at the University of Oxford.

Researchers from Oxford’s Department of Physics are part of an international team investigating sodium cobaltate: a material similar in structure to the lithium cobaltate used in rechargeable batteries for many electronic devices.

In a recent Nature paper the team describe the patterning of ions in sodium cobaltate– observations that are helping to unlock the secrets of how ions move around inside the electrodes of lithium-based batteries. Their findings could lead to improvements in battery design.

Vital to their success were the very high quality single crystals of sodium cobaltate grown by Dr D Prabhakaran in the Clarendon Laboratory. ‘The hardest part was learning how to control the concentration of sodium in the crystals,’ Dr Prabhakaran said. ‘I achieved this by using a special type of floating-zone furnace that allows the growth of crystals in a high-pressure atmosphere and reduces the evaporation of sodium.’ These samples were then bombarded with neutrons to reveal how the sodium ions were arranged.

Professor Andrew Boothroyd, a member of the Oxford team, said: ‘If you want to engineer new materials with improved properties you need to know how they work. Knowing the forces which drive the sodium ion ordering we can start to understand how the ions move through the structure and explain many of the observed electrical and magnetic properties of this fascinating material – such as a superconducting phase that only develops after you immerse it in water.’

Source: Oxford University

Explore further: Researchers discover new material to produce clean energy

add to favorites email to friend print save as pdf

Related Stories

Komaba Group reports sodium ion battery progress

Sep 28, 2012

(Phys.org)—Scientists with a common goal, to figure out an alternative to the lithium ion battery, the main power source of choice, are not giving up. The quarrel is not with the lithium ion battery's performance ...

Recommended for you

Unified theory for skyrmion-materials

7 hours ago

Magnetic vortex structures, so-called skyrmions, could in future store and process information very efficiently. They could also be the basis for high-frequency components. For the first time, a team of physicists ...

Why seashells' mineral forms differently in seawater

11 hours ago

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth's oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take ...

The building blocks of the future defy logic

Feb 26, 2015

Wake up in the morning and stretch; your midsection narrows. Pull on a piece of plastic at separate ends; it becomes thinner. So does a rubber band. One might assume that when a force is applied along an ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.