Research could produce a new class of computer chip

Feb 14, 2007

A new research project at Worcester Polytechnic Institute (WPI) is aimed at developing an entirely new type of reconfigurable computing device, one that combines the speed and power efficiency of custom-designed chips with the low cost and flexibility of programmable devices.

The work is being funded by DARPA (the Defense Advanced Research Projects Agency) which recently granted a Young Faculty Award to Xinming Huang, assistant professor of electrical and computer engineering at WPI. Huang was one of only 10 researchers nationwide to receive a 2007 Young Faculty Award from the agency, whose mission is to fund high-risk research with the potential to dramatically advance traditional military roles and missions.

The 18-month, $150,000 award will support Huang’s effort to close an important technology gap that divides the two primary ways of designing and building chips to run electronic devices.

Most consumer electronics, from cell phones, to PDAs, to MP3 players, use ASIC (application-specific integrated circuit) chips, which are “hard-wired” to perform specific jobs and cannot be reprogrammed. FPGAs (field-programmable gate arrays), on the other hand, contain a general-purpose array of components that can be reprogrammed on the fly to do different tasks.

Each technology has advantages and disadvantages. ASICs are more power efficient than FPGAs, which, because the are designed to be universal, have many redundant electronic components, all of which consume power whether or not that are needed to carry out a particular application. Because they are programmed by software, rather than having their functions hard-wired into silicon, FPGAs cost a small fraction of the $1 million to $2 million it takes to design a new ASIC chip.

“For military applications, battery power is preferred, which favors ASICs,” Huang says. “But the battlefield is a dynamic environment, with constantly changing conditions. The military would like to be able to be able to continually reprogram chips in the field—for example, to dynamically change the spectrum for radio communications or to update the function of tactical sensors. Currently, this can only be done by using multiple ASICs or power-greedy FPGAs.”

Huang's reconfigurable computing device, called the smart cell, will combine the advantages of ASICs and FPGAs. It will incorporate more than a thousand individual processors wired onto a silicon substrate. Each processor will be responsible for performing a single operation, such as addition or multiplication, as data flows through the chip. Using a type of parallel computing called stream processing, the chip will complete hundreds of calculations simultaneously, enabling it to perform up to 300 times faster than microprocessors and about 15 times faster than FPGAs.

As with FPGAs, the smart cells will be programmed by software, enabling their functions to be updated continually as conditions change. But since the individual processors will be optimally design to perform specific functions, the chips will approach the power efficiency of ASICs. The architecture should scale easily, making it possible to build more powerful chips just by adding more processors.

To create the new architecture, Huang must find a way to integrate hundreds of individual processors in a single chip, something that has never been attempted before. An even more daunting task is developing a way to connect the processors to each other. “If the chip is to be truly reconfigurable, every processor must be able communicate with every other processor at any time,” Huang says. “These interconnections will be very difficult to develop, but are the key to the chip’s success.”

Source: Worcester Polytechnic Institute

Explore further: Faster computation of electromagnetic interference on an electronic circuit board

add to favorites email to friend print save as pdf

Related Stories

Ex-MIT company rethinks power-feasting amplifiers

Nov 01, 2012

(Phys.org)—Technologists generally agree that power amplifiers have proven to be inefficient pieces of hardware. Turning electricity into radio signals, they eat into the battery life of smartphones and ...

Nvidia says Kal-El chip will have five cores

Sep 22, 2011

(PhysOrg.com) -- Nvidia says its upcoming Kal-El chip (Tegra 3) will have five cores, not four. The news appeared this week when the Santa Clara company announced a white paper describing the architecture of this system-on-a-chip for mobile computing. ...

NVIDIA GPUs power world's fastest supercomputer

Oct 29, 2010

(PhysOrg.com) -- NVIDIA has built the worldэs fastest supercomputer using 7,000 of its graphics processor chips. With a horsepower equivalent to 175,000 laptop computers, its sustained performance is ...

A new light wave

Aug 12, 2013

Hold a magnifying glass over the driveway on a sunny day and it will focus sunlight into a single beam. Hold a prism in front of the window and the light will spread out into a perfect rainbow. Lenses like ...

Recommended for you

A smart prosthetic knee with in-vivo diagnoses

Apr 22, 2014

The task was to develop intelligent prosthetic joints that, via sensors, are capable of detecting early failure long before a patient suffers. EPFL researchers have taken up the challenge.

Old tires become material for new and improved roads

Apr 22, 2014

(Phys.org) —Americans generate nearly 300 million scrap tires every year, according to the Environmental Protection Agency (EPA). Historically, these worn tires often end up in landfills or, when illegally ...

Students take clot-buster for a spin

Apr 21, 2014

(Phys.org) —In the hands of some Rice University senior engineering students, a fishing rod is more than what it seems. For them, it's a way to help destroy blood clots that threaten lives.

User comments : 0

More news stories

US urged to drop India WTO case on solar

Environmentalists Wednesday urged the United States to drop plans to haul India to the WTO to open its solar market, saying the action would hurt the fight against climate change.