First Research Projects Underway at Diamond

Feb 06, 2007

This week marks the dawn of a new era of scientific endeavour as Diamond Light Source, the UK’s brand new synchrotron facility, opens its doors for business and welcomes its very first scientific users.

Top academic teams from Durham, Oxford, Leicester and London have been selected to be the first users of one of the brightest sources of light in the world that will enable them to find out more than ever before about the secret structure of the world around us.

These principal projects were selected from a total of 127 proposals received last year from the synchrotron user community. The first users possess an extensive knowledge of synchrotron science and bring a range of research projects to Diamond from cancer research, to advancing data storage techniques, to unravelling the mysteries of the solar system. This will provide Diamond scientists with real projects to assist in the 6 month period of fine-tuning of the first experimental stations that will secure a place for Diamond on the international research stage.

The first research projects will be carried out in experimental stations (or beamlines) that are part of Phase I of development – comprising Diamond’s buildings, the synchrotron machine itself and the first seven beamlines. Phase I investment of £260 million from the UK Government (86%) via CCLRC and the Wellcome Trust (14%), has been used to deliver the facility on time, on budget and to the specifications set out.

Funding for Phase II of the project – a further £120 million – was confirmed in October 2004 and will be used to build 15 additional beamlines to expand the range of research applications available at Diamond. Construction has already started on the Phase II beamlines and beyond this, on average four to five new beamlines will be available each year until 2011. As it opens its doors to its first users this month, Diamond is able to celebrate the successful completion of Phase I and contemplate the exciting prospect of entering Phase II.

Source: Diamond

Explore further: Using antineutrinos to monitor nuclear reactors

add to favorites email to friend print save as pdf

Related Stories

Doubling estimates of light elements in the Earth's core

Mar 05, 2013

The inner core of the Earth is the remotest area on the globe, mostly impossible to study directly. It is an area of the planet that experiences both extremely high pressure ranging from 3,300,000 to 3,600,000 ...

X-rays pave way for low cost, large scale carbon capture

Jul 31, 2012

(Phys.org) -- Diamond Light Source is being used to improve low cost methods for carbon capture. Scientists from the University of Leeds are using the UK's national synchrotron to investigate the efficiency ...

Recommended for you

Using antineutrinos to monitor nuclear reactors

3 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

7 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

21 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Bake your own droplet lens

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...