First Research Projects Underway at Diamond

Feb 06, 2007

This week marks the dawn of a new era of scientific endeavour as Diamond Light Source, the UK’s brand new synchrotron facility, opens its doors for business and welcomes its very first scientific users.

Top academic teams from Durham, Oxford, Leicester and London have been selected to be the first users of one of the brightest sources of light in the world that will enable them to find out more than ever before about the secret structure of the world around us.

These principal projects were selected from a total of 127 proposals received last year from the synchrotron user community. The first users possess an extensive knowledge of synchrotron science and bring a range of research projects to Diamond from cancer research, to advancing data storage techniques, to unravelling the mysteries of the solar system. This will provide Diamond scientists with real projects to assist in the 6 month period of fine-tuning of the first experimental stations that will secure a place for Diamond on the international research stage.

The first research projects will be carried out in experimental stations (or beamlines) that are part of Phase I of development – comprising Diamond’s buildings, the synchrotron machine itself and the first seven beamlines. Phase I investment of £260 million from the UK Government (86%) via CCLRC and the Wellcome Trust (14%), has been used to deliver the facility on time, on budget and to the specifications set out.

Funding for Phase II of the project – a further £120 million – was confirmed in October 2004 and will be used to build 15 additional beamlines to expand the range of research applications available at Diamond. Construction has already started on the Phase II beamlines and beyond this, on average four to five new beamlines will be available each year until 2011. As it opens its doors to its first users this month, Diamond is able to celebrate the successful completion of Phase I and contemplate the exciting prospect of entering Phase II.

Source: Diamond

Explore further: Watching the structure of glass under pressure

add to favorites email to friend print save as pdf

Related Stories

Doubling estimates of light elements in the Earth's core

Mar 05, 2013

The inner core of the Earth is the remotest area on the globe, mostly impossible to study directly. It is an area of the planet that experiences both extremely high pressure ranging from 3,300,000 to 3,600,000 ...

X-rays pave way for low cost, large scale carbon capture

Jul 31, 2012

(Phys.org) -- Diamond Light Source is being used to improve low cost methods for carbon capture. Scientists from the University of Leeds are using the UK's national synchrotron to investigate the efficiency ...

Recommended for you

Watching the structure of glass under pressure

12 hours ago

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

15 hours ago

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

16 hours ago

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0