First Research Projects Underway at Diamond

Feb 06, 2007

This week marks the dawn of a new era of scientific endeavour as Diamond Light Source, the UK’s brand new synchrotron facility, opens its doors for business and welcomes its very first scientific users.

Top academic teams from Durham, Oxford, Leicester and London have been selected to be the first users of one of the brightest sources of light in the world that will enable them to find out more than ever before about the secret structure of the world around us.

These principal projects were selected from a total of 127 proposals received last year from the synchrotron user community. The first users possess an extensive knowledge of synchrotron science and bring a range of research projects to Diamond from cancer research, to advancing data storage techniques, to unravelling the mysteries of the solar system. This will provide Diamond scientists with real projects to assist in the 6 month period of fine-tuning of the first experimental stations that will secure a place for Diamond on the international research stage.

The first research projects will be carried out in experimental stations (or beamlines) that are part of Phase I of development – comprising Diamond’s buildings, the synchrotron machine itself and the first seven beamlines. Phase I investment of £260 million from the UK Government (86%) via CCLRC and the Wellcome Trust (14%), has been used to deliver the facility on time, on budget and to the specifications set out.

Funding for Phase II of the project – a further £120 million – was confirmed in October 2004 and will be used to build 15 additional beamlines to expand the range of research applications available at Diamond. Construction has already started on the Phase II beamlines and beyond this, on average four to five new beamlines will be available each year until 2011. As it opens its doors to its first users this month, Diamond is able to celebrate the successful completion of Phase I and contemplate the exciting prospect of entering Phase II.

Source: Diamond

Explore further: A new multi-bit 'spin' for MRAM storage

add to favorites email to friend print save as pdf

Related Stories

Doubling estimates of light elements in the Earth's core

Mar 05, 2013

The inner core of the Earth is the remotest area on the globe, mostly impossible to study directly. It is an area of the planet that experiences both extremely high pressure ranging from 3,300,000 to 3,600,000 ...

X-rays pave way for low cost, large scale carbon capture

Jul 31, 2012

(Phys.org) -- Diamond Light Source is being used to improve low cost methods for carbon capture. Scientists from the University of Leeds are using the UK's national synchrotron to investigate the efficiency ...

Recommended for you

IHEP in China has ambitions for Higgs factory

10 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

12 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

13 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

16 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 0