Protein Cage Helps Nanoparticles Target Tumors

Jan 17, 2007

Researchers at Montana State University have used an engineered form of ferritin, a cage-like iron storage protein, to both synthesize and deliver iron oxide nanoparticles to tumors. The investigators, led by Trevor Douglas, Ph.D., and Mark Young, Ph.D., reported their findings in the Journal of the American Chemical Society.

Normally, human ferritin comprises two subunits that together create a protein that can store iron and ferry it throughout the body. For this work, however, the researchers used a genetically engineered form of the protein that contains only one subunit and that also contains a short peptide that binds to the blood vessels that surround cells.

This engineered ferritin protein self-assembles into a cage-like structure that catalyzes the conversion of soluble iron into nanoscale iron oxide particles. Those iron oxide nanoparticles, containing between 3,000 and 5,000 iron atoms among them, grow within each protein cage, creating a tumor-targeted protein nanostructure that can act as a magnetic resonance imaging (MRI) contrast agent.

Experiments with tumor cells growing in culture demonstrated that these engineered nanostructures were capable of binding to tumor cells expressing a protein known as ævß3. The researchers note that the use of other cage-like proteins, instead of ferritin, could provide a wide range of tools for targeting tumors and delivering imaging agents and drugs to malignant cells. They believe that their method for producing these proteins in a form engineered to display tumor-targeting peptides should also prove to be a generally useful technique.

This work is detailed in a paper titled, “Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles.” An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: 'NanoSuit': Researchers use nano-coating to allow for electron microscopy of living insects

add to favorites email to friend print save as pdf

Related Stories

Using less fish to test chemicals safety

30 minutes ago

The JRC has released a new strategy on how to replace, reduce and refine the use of fish in testing of chemicals' effect on flora and fauna in water (aquatic toxicity) and chemicals' uptake and concentration ...

Snack attack: Bears munch on ants and help plants grow

31 minutes ago

Tiny ants may seem like an odd food source for black bears, but the protein-packed bugs are a major part of some bears' diets and a crucial part of the food web that not only affects other bugs, but plants too.

Study uncovers secrets of a clump-dissolving protein

1 hour ago

Workhorse molecules called heat-shock proteins contribute to refolding proteins that were once misfolded and clumped, causing such disorders as Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's ...

Recommended for you

Holes in valence bands of nanodiamonds discovered

15 hours ago

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Engineering self-assembling amyloid fibers

Jan 26, 2015

Nature has many examples of self-assembly, and bioengineers are interested in copying or manipulating these systems to create useful new materials or devices. Amyloid proteins, for example, can self-assemble ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.