A hot idea for insulating tiny batteries

Jan 10, 2007

Engineering physics researchers are devising a unique "blanket" that will enable them to squeeze as much electricity as possible from nuclear-powered batteries the size of a grain of coarse salt.

Such batteries, which exploit the natural decay of radioisotopes to generate electricity, could provide virtually indefinite power for micro-technologies like fly-sized robots for military applications or sensors that monitor a building's health.

Other technologies such as fuel cells, chemical batteries or turbine generators also might work in micro-scale applications, says Professor James Blanchard. "But all of them are short-lived," he says. "They either need to be recharged or refueled. Our niche is things that need to be placed and ignored, and just keep running for years."

Nuclear microbatteries convert heat or energy to electricity more efficiently when they are hot, so it makes sense to insulate them, says Blanchard. "The better the insulation, the hotter the source gets, so the more efficient the battery can be," he says.

However, insulating a millimeter-square battery in a way that minimizes heat loss is no easy task. Multifoil insulation is an effective macro-level insulator that combines several thin layers of foil each separated by a vacuum. "They work because they're radiating heat from one layer to another, as opposed to conducting heat through a solid," says Blanchard.

For the microscale, however, multifoil insulation is far too thick.

So, capitalizing on the layered concept, which reduces heat radiation for a fixed temperature drop, Blanchard and graduate student Rui Yao decided to sandwich semicircular silicon oxide pillars-poor conductors-between very thin silicon sheets.

"You want as little conduction through these pillars as possible," says Blanchard.

They developed elaborate computer models to study the heat radiation and conduction of their microscale insulaton. And, using Wisconsin Center for Applied Microelectronics clean room facilities, Yao constructed silicon prototypes.

He now is experimentally verifying what his computer models suggest-that heat is radiating through the silicon layers without much heat loss. "The prototypes he built are a little thicker than the ones we ultimately want to get, but they're consistent with his models," says Blanchard.

Funded by a three-year, $300,000 Department of Energy grant and inspired by an earlier collaboration with Sandia National Laboratory researchers, Blanchard and Yao are still testing and refining the insulation. Implementation for this promising technology, they say, is a couple of years down the road.

"It looks like we'll have an effective insulator that's better than any solid-and better, even, than some of the multi-foil insulations that you can buy commercially," says Blanchard.

Source: University of Wisconsin

Explore further: Medieval bishop's theory resembles modern concept of multiple universes

add to favorites email to friend print save as pdf

Related Stories

When things get glassy, molecules go fractal

1 hour ago

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

FCC to propose pay-for-priority Internet standards

1 hour ago

The Federal Communications Commission is set to propose new open Internet rules that would allow content companies to pay for faster delivery over the so-called "last mile" connection to people's homes.

SK Hynix posts Q1 surge in net profit

1 hour ago

South Korea's SK Hynix Inc said Thursday its first-quarter net profit surged nearly 350 percent from the previous year on a spike in sales of PC memory chips.

Brazil enacts Internet 'Bill of Rights'

1 hour ago

Brazil's president signed into law on Wednesday a "Bill of Rights" for the digital age that aims to protect online privacy and promote the Internet as a public utility by barring telecommunications companies ...

Recommended for you

Using antineutrinos to monitor nuclear reactors

3 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

7 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

21 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Bake your own droplet lens

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...