Gas giants jump into planet formation early

Jan 08, 2007
Gas giants jump into planet formation early
This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas. Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years. The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond. Credit: Image credit: NASA/JPL-Caltech/T. Pyle (SSC)

Gas-giant planets like Jupiter and Saturn form soon after their stars do, according to new research.

Observations from NASA's Spitzer Space Telescope show that gas giants either form within the first 10 million years of a sun-like star's life, or not at all. The study offers new evidence that gas-giant planets must form early in a star's history. The lifespan of sun-like stars is about 10 billion years.

Ilaria Pascucci of the University of Arizona Steward Observatory in Tucson led a team of astronomers who conducted the most comprehensive search for gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years.

The scientists used Spitzer's heat-seeking infrared eyes to search for warm gas in the inner portions of star systems, an area comparable to the zone between Earth and Jupiter in our own solar system.

In addition, Pascucci, team member Michael Meyer of the UA Steward Observatory and their colleagues probed for cold gas in the outer regions of these star systems with the Arizona Radio Observatory's 10-meter Submillimeter Telescope (SMT) on Mount Graham, Ariz. The outer zones of these star systems are analogous to the region around Saturn's orbit and beyond in our own solar system.

All of the stars in the study – including those as young as a few million years – have less than 10 percent of Jupiter's mass in gas swirling around them, Pascucci said.

"This indicates that gas giant planets like Jupiter and Saturn have already formed in these young solar system analogs, or they never will," Meyer said.

Astronomers suspect that gas around a star may also be important for sending terrestrial, or rocky, planets like Earth into relatively circular orbits as they form. If Earth had a highly elliptical orbit rather than relatively circular one, its temperature swings would be so extreme that humans and other complex organisms might not have evolved.

Many of the sun-like star systems in the study don't currently contain enough gas to send developing rocky planets into circular orbit, Pascucci said. One possibility is that terrestrial planets around these stars have highly elliptical orbits that hinder the development of complex life. Another possibility is that some mechanism other than gas moves the terrestrial planets into circular orbits once they are fully formed. "Our observations tested only the effect of gas," Pascucci said.

Pascucci's paper was published in the Astrophysical Journal in November 2006. The astronomers are presenting a poster of their findings today at the 209th meeting of the American Astronomical Society in Seattle, Wash. The observations were part of the Spitzer Legacy Science Program "Formation and Evolution of Planetary Systems" (FEPS). Meyer, a co-author of the paper, is the principal investigator of the FEPS program.

Source: University of Arizona

Explore further: Millisecond pulsars clearly demonstrate that pulsars are neutron stars

add to favorites email to friend print save as pdf

Related Stories

Catching the planets and new views of Mars

Sep 25, 2014

Looking west after sunset on Friday September 26, the thin waxing crescent moon forms a triangle with Mercury and Spica, the brightest star in the constellation of Virgo. You can see how far Mercury has ...

New milestone in the search for water on distant planets

Sep 24, 2014

Astronomers have found water vapor in the atmosphere of a planet about four times bigger than Earth, in the constellation Cygnus about 124 light years - or nearly 729 trillion miles - from our home planet. ...

Scientific instruments of Rosetta's Philae lander

Sep 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Infant solar system shows signs of windy weather

Sep 22, 2014

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Recommended for you

How small can galaxies be?

22 hours ago

Yesterday I talked about just how small a star can be, so today let's explore just how small a galaxy can be. Our Milky Way galaxy is about 100,000 light years across, and contains about 200 billion stars. Th ...

The coolest stars

23 hours ago

One way that stars are categorized is by temperature. Since the temperature of a star can determine its visual color, this category scheme is known as spectral type. The main categories of spectral type are ...

Simulations reveal an unusual death for ancient stars

23 hours ago

(Phys.org) —Certain primordial stars—those 55,000 and 56,000 times the mass of our Sun, or solar masses—may have died unusually. In death, these objects—among the Universe's first-generation of stars—would ...

User comments : 0