NIST laser-based method cleans up grubby nanotubes

Dec 22, 2006
NIST laser-based method cleans up grubby nanotubes
Before and after electron microscope images of a pyroelectric detector coated with single-walled nanotubes (SWNTs) visually demonstrate the effect of the laser cleaning process. In addition, the SWNTs look visibly blacker after laser treatment, suggesting less graphitic material and increased porosity. Credit: NIST

Before carbon nanotubes can fulfill their promise as ultrastrong fibers, electrical wires in molecular devices, or hydrogen storage components for fuel cells, better methods are needed for purifying raw nanotube materials. Researchers at the National Institute of Standards and Technology (NIST) and the National Renewable Energy Laboratory (NREL, Golden, Colo.), have taken a step toward this goal by demonstrating a simple method of cleaning nanotubes by zapping them with carefully calibrated laser pulses.

When carbon nanotubes--the cylindrical form of the fullerene family--are synthesized by any of several processes, a significant amount of contaminants such as soot, graphite and other impurities also is formed. Purifying the product is an important issue for commercial application of nanotubes.

NIST laser-based method cleans up grubby nanotubes
Before and after electron microscope images of a pyroelectric detector coated with single-walled nanotubes (SWNTs) visually demonstrate the effect of the laser cleaning process. In addition, the SWNTs look visibly blacker after laser treatment, suggesting less graphitic material and increased porosity. Credit: NIST

In a forthcoming issue of Chemical Physics Letters, the NIST/NREL team describes how pulses from an excimer laser greatly reduce the amount of carbon impurities in a sample of bulk carbon single-walled nanotubes, without destroying tubes. Both visual examination and quantitative measurements of material structure and composition verify that the resulting sample is "cleaner." The exact cleaning process may need to be slightly modified depending on how the nanotubes are made, the authors note. But the general approach is simpler and less costly than conventional "wet chemistry" processes, which can damage the tubes and also require removal of solvents afterwards.

"Controlling and determining tube type is sort of the holy grail right now with carbon nanotubes. Purity is a key variable," says NIST physicist John Lehman, who leads the research. "Over the last 15 years there's been lots of promise, but when you buy some material you realize that a good percentage of it is not quite what you hoped. Anyone who thinks they're going into business with nanotubes will realize that purification is an important--and expensive--step. There is a lot of work to be done."

The new method is believed to work because, if properly tuned, the laser light transfers energy to the vibrations and rotations in carbon molecules in both the nanotubes and contaminants. The nanotubes, however, are more stable, so most of the energy is transferred to the impurities, which then react readily with oxygen or ozone in the surrounding air and are eliminated. Success was measured by examining the energy profiles of the light scattered by the bulk nanotube sample after exposure to different excimer laser conditions. Each form of carbon produces a different signature.

Changes in the light energy as the sample was exposed to higher laser power indicated a reduction in impurities. Before-and-after electron micrographs visually confirmed the initial presence of impurities (i.e., material that did not appear rope-like) as well as a darkening of the nanotubes post-treatment, suggesting less soot and increased porosity.

The researchers developed the new method while looking for quantitative methods for evaluating laser damage to nanotube coatings for next-generation NIST standards for optical power measurements (see phys.org/news2821.html). The responsivity of a prototype NIST standard increased 5 percent after the nanotube coating was cleaned.

Citation: K.E. Hurst, A.C. Dillon, D.A. Keenan and J.H. Lehman. Cleaning of carbon nanotubes near the [pi]-plasmon resonance. Chemical Physics Letters, In Press, Corrected Proof. Available online 15 November 2006.

Source: National Institute of Standards and Technology

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

New battery technology employs multifunctional materials

Mar 26, 2014

Lithium-ion batteries power a vast array of modern devices, from cell phones, laptops, and laser pointers to thermometers, hearing aids, and pacemakers. The electrodes in these batteries typically comprise ...

Recommended for you

Thinnest feasible nano-membrane produced

4 hours ago

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

7 hours ago

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...