Nanoparticles Designed for Dual-Mode Imaging

Dec 18, 2006

Nanoscale, inorganic fluorescent imaging agents such as quantum dots have become an important tool for researchers studying key biomolecules involved in cancer. At the same time, magnetic iron oxide nanoparticles are proving to be useful in detecting tumors and metastatic lesions thanks to their ability to act as powerful contrast agents for use with magnetic resonance imaging (MRI).

Now, researchers at Korea’s Yonsei University, have married the best characteristics of these two types of nanoparticles to create a single nanoparticle probe that can yield clinically useful images of both tumors and the molecules involved in cancer.

Writing in the journal Angewandte Chemie International Edition, Jinwoo Cheon, Ph.D., and his colleagues describe the construction of their biocompatible dual-mode nanoparticle. The investigators start by synthesizing 30-nanometer-diameter silica nanoparticles impregnated with rhodamine, a bright fluorescent dye, and 9-nanometer-diameter water-soluble iron oxide nanoparticles. They then mix these two nanoparticles with a chemical linker, yielding the dual-mode nanoparticle. On average, ten magnetic iron oxide particles link to a single dye-containing silica nanoparticle, and the resulting construct is approximately 45 nanometers in diameter.

In somewhat of a surprise, the combination nanoparticle performed better in both MRI and fluorescent imaging tests than did the individual components. In MRI experiments, the combination nanoparticle generated an MRI signal that was over three-fold more intense than did the same number of iron oxide nanoparticles. Similarly, the fluorescent signal from the dual-mode nanoparticle was almost twice as bright as that produced by dye molecules linked directly to iron oxide nanoparticles.

Next, the researchers labeled the dual-mode nanoparticles with an antibody that binds to molecules known as polysialic acids, which are found on the surface of certain nerve cell and lung tumors. These targeted nanoparticles were quickly taken up by cultured tumor cells and were readily visible using fluorescence microscopy.

This work, which was supported by the National Cancer Institute Alliance for Nanotechnology Excellence, is detailed in a paper titled, “Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma.” This paper is available at the researcher’s website.

A second paper, in which the researchers detail their development of a second dual-mode nanoparticle, was published in the Journal of the American Chemical Society. This paper, titled, “Biocompatible heterostructured nanoparticles for multimodal biological detection,” is also available at the researcher’s website.

Source: National Cancer Institute

Explore further: New cancer-hunting 'nano-robots' to seek and destroy tumours

add to favorites email to friend print save as pdf

Related Stories

Arctic sea ice influenced force of the Gulf Stream

8 minutes ago

The force of the Gulf Stream was significantly influenced by the sea ice situation in the Fram Strait in the past 30,000 years. Scientists at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ...

Water window imaging opportunity

12 minutes ago

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

Ticketfly buying WillCall for on-premise data

1 hour ago

Ticketfly Inc., a San Francisco-based technology company among several posing a challenge to Ticketmaster, is acquiring WillCall Inc., a crosstown rival that turns your smartphone into a mobile wallet at live events.

Voice, image give clues in hunt for Foley's killer

1 hour ago

Police and intelligence services are using image analysis and voice-recognition software, studying social media postings and seeking human tips as they scramble to identify the militant recorded on a video ...

Recommended for you

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

User comments : 0