Nanoparticles Designed for Dual-Mode Imaging

Dec 18, 2006

Nanoscale, inorganic fluorescent imaging agents such as quantum dots have become an important tool for researchers studying key biomolecules involved in cancer. At the same time, magnetic iron oxide nanoparticles are proving to be useful in detecting tumors and metastatic lesions thanks to their ability to act as powerful contrast agents for use with magnetic resonance imaging (MRI).

Now, researchers at Korea’s Yonsei University, have married the best characteristics of these two types of nanoparticles to create a single nanoparticle probe that can yield clinically useful images of both tumors and the molecules involved in cancer.

Writing in the journal Angewandte Chemie International Edition, Jinwoo Cheon, Ph.D., and his colleagues describe the construction of their biocompatible dual-mode nanoparticle. The investigators start by synthesizing 30-nanometer-diameter silica nanoparticles impregnated with rhodamine, a bright fluorescent dye, and 9-nanometer-diameter water-soluble iron oxide nanoparticles. They then mix these two nanoparticles with a chemical linker, yielding the dual-mode nanoparticle. On average, ten magnetic iron oxide particles link to a single dye-containing silica nanoparticle, and the resulting construct is approximately 45 nanometers in diameter.

In somewhat of a surprise, the combination nanoparticle performed better in both MRI and fluorescent imaging tests than did the individual components. In MRI experiments, the combination nanoparticle generated an MRI signal that was over three-fold more intense than did the same number of iron oxide nanoparticles. Similarly, the fluorescent signal from the dual-mode nanoparticle was almost twice as bright as that produced by dye molecules linked directly to iron oxide nanoparticles.

Next, the researchers labeled the dual-mode nanoparticles with an antibody that binds to molecules known as polysialic acids, which are found on the surface of certain nerve cell and lung tumors. These targeted nanoparticles were quickly taken up by cultured tumor cells and were readily visible using fluorescence microscopy.

This work, which was supported by the National Cancer Institute Alliance for Nanotechnology Excellence, is detailed in a paper titled, “Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma.” This paper is available at the researcher’s website.

A second paper, in which the researchers detail their development of a second dual-mode nanoparticle, was published in the Journal of the American Chemical Society. This paper, titled, “Biocompatible heterostructured nanoparticles for multimodal biological detection,” is also available at the researcher’s website.

Source: National Cancer Institute

Explore further: Research reveals how our bodies keep unwelcome visitors out of cell nuclei

add to favorites email to friend print save as pdf

Related Stories

Form Devices team designs Point as a house sitter

23 hours ago

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

Nov 22, 2014

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

Recommended for you

Nanomaterials to preserve ancient works of art

10 hours ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

10 hours ago

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

Protons fuel graphene prospects

Nov 26, 2014

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.