As fast as a shark in water

Dec 15, 2006

With the help of tiny ridge-like structures in their scales, sharks are able to minimize drag when swimming. A new coating system takes advantage of this “riblet effect” to improve the aerodynamics of vehicles and aircraft.

Scales have a beneficial effect on the speed at which fish swim: tiny ridges arranged parallel to the swimming direction, known as “riblets”, reduce drag in water. This riblet effect, which has been known to scientists and engineers for more than 50 years, can also be utilized by ships and other means of transport: Films with a suitable structure can be applied to their outer surfaces to reduce frictional resistance and thus bring down fuel consumption.

The problem is that these films can only be applied to flat or convex surfaces, but bodies whose aerodynamic or hydrodynamic properties have been optimized tend to have a more complex shape. The alternative to coating with a film is to texture the surface itself with riblets. However, none of the laser or milling techniques which have been employed so far are suitable for components that have to be painted, as the paint would immediately flow into the tiny grooves and fill them.

Dr. Volkmar Stenzel of the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM (Germany) thus came up with the idea of integrating the riblet pattern into the lacquer itself. “That meant we had to look for a tool which didn’t adhere to the lacquer, so that it could impress the required structure onto it,” explains Stenzel. A prototype has now been created, combining a suitable lacquer and the technology for applying it. The novelty is that an approximately 20 cm wide transparent silicone film with a riblet pattern serves as a “stamp”. This is capable of printing patterns with a resolution of a few nanometers, similar to those found in holograms, onto surfaces. The film runs over three flexible rollers and can thus adapt its shape to hug uneven surfaces. From the front, a new type of resin lacquer is continuously sprayed onto the film and transferred with the help of the rollers onto the surface to be treated. A UV lamp then hardens the resin in a fraction of a second. Because of the extremely fast application and hardening process, the riblet structure is retained.

“Our trial lacquer is based on the chemistry used in aviation paints. It is mechanically very durable and,” Stenzel hopes, “should also be resistant to strong UV radiation at high altitude.” A field trial will soon show whether the lacquer fulfills its promise in practice. However, applications for the new coating system are not restricted to the aviation industry, as Stenzel stresses: “With this technology we can apply any other micro and nano structures to lacquered surfaces.”

Source: Fraunhofer-Gesellschaft

Explore further: New ultrasound device may add in detecting risk for heart attack, stroke

add to favorites email to friend print save as pdf

Related Stories

Jet-propelled wastewater treatment

Dec 20, 2013

Researchers from the Max Planck Institute for Intelligent Systems in Stuttgart have developed a new method for the active degradation of organic pollutants in solution by using swimming microengines. The ...

Optimizing nanoparticles for commercial applications

Apr 29, 2013

Nanoparticles are used in many commercial products catalysts to cosmetics. A review published today in the Science and Technology of Advanced Materials by researchers in Sweden and Spain describes recent ...

Nanotechnology helps scientists keep silver shiny

Oct 26, 2012

There are thousands of silver artifacts in museum collections around the world, and keeping them shiny is a constant challenge. So scientists are using new technology to give conservators a helping hand. A team of researchers ...

Silver saver: Nanotechnology keeps the shine on silver

Apr 12, 2011

(PhysOrg.com) -- Anyone who's ever polished silver knows that keeping the tarnish at bay is never ending work. But, you may not know that polishing also rubs away some of the precious metal, whether it's your ...

Active packaging keeps meat fresh for longer

Oct 01, 2010

To date, supermarkets have only been able to keep products on their meat counters for a few days. But now researchers have developed an antimicrobial active packaging film that destroys the microorganisms ...

Recommended for you

A smart prosthetic knee with in-vivo diagnoses

Apr 22, 2014

The task was to develop intelligent prosthetic joints that, via sensors, are capable of detecting early failure long before a patient suffers. EPFL researchers have taken up the challenge.

User comments : 0

More news stories

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.

Facebook woos journalists with 'FB Newswire'

Facebook launched Thursday FB Newswire, billed as an online trove of real-time information for journalists and newsrooms to mine while reporting on events or crafting stories.

Genetic legacy of rare dwarf trees is widespread

Researchers from Queen Mary University of London have found genetic evidence that one of Britain's native tree species, the dwarf birch found in the Scottish Highlands, was once common in England.