Data transport via fibre-optic network could be faster still

Dec 07, 2006

Due to the explosive growth in data transport the need for a greater utilisation of the bandwidth of fibre-optic networks is increasing. Dutch researcher Erwin Verdurmen examined how the transmission capacity of the glass fibre can be increased by a better use of the bandwidth. He succeeded in achieving a data transfer of 320 gigabits per second. That is much faster than the 15 Mb per second which the fastest Internet connection for private users can currently provide (connections at companies are about ten times faster).

An existing technology for increasing the bandwidth is 'wavelength division multiplexing' (WDM). In this approach the electrical data signals modulate different colours of light, which are combined in a single optical fibre. An alternative for WDM is combining several optical signal streams into a single stream of short pulses of a single colour of light: 'optical time division multiplexing' (OTDM).

Verdurmen' s research focused on the adding and extraction of a specific data stream from an OTDM signal. The component that performs this function is a so-called add-drop multiplexer (ADM). These ADMs can be subdivided into two categories. The first category is based on solutions that make use of semiconductor structures and the second category makes use of the nonlinearity of an optical fibre.

The application of the ADM technology on the basis of semiconductor material encountered the problem that the necessary higher input capacity led to a faster signal response but also a deterioration in the signal-noise ratio. The study therefore focused on ADMs that use the nonlinearity of optical fibres.

The advantage of using the nonlinearity of the optical fibre turned out to be an ultrafast response time. As a result of this Verdurmen succeeded in producing an ADM with a speed of 320 gigabits per second. According to Verdurmen, combining WDM and OTDM will lead to even higher speeds still in the future.

Source: NWO

Explore further: Making LED-illuminated advertisements light and flexible

Related Stories

Radio astronomy backed by big data projects

Apr 21, 2015

As the leading edge of the Square Kilometre Array (SKA) project, the Murchison Widefield Array (MWA) radio telescope is at the forefront of the big data challenges facing radio astronomy, presenting and solving ...

Recommended for you

Making LED-illuminated advertisements light and flexible

10 hours ago

VTT is involved in a European project, developing novel LED advertising displays, which combine thin, lightweight and bendable structures with advanced optical quality. The project will implement, for example, a LED display ...

Detecting human life with remote technology

11 hours ago

Flinders engineering students Laith Al-Shimaysawee and Ali Al-Dabbagh have developed ground-breaking new technology for detecting human life using remote cameras.

Team develops faster, higher quality 3-D camera

Apr 24, 2015

When Microsoft released the Kinect for Xbox in November 2010, it transformed the video game industry. The most inexpensive 3-D camera to date, the Kinect bypassed the need for joysticks and controllers by ...

Researchers finding applications for tough spinel ceramic

Apr 24, 2015

Imagine a glass window that's tough like armor, a camera lens that doesn't get scratched in a sand storm, or a smart phone that doesn't break when dropped. Except it's not glass, it's a special ceramic called ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.