A Bunch of Electron Chicanery

Nov 21, 2006
A Bunch of Electron Chicanery
The first bunch compressor for the LCLS, being installed during the current shutdown. This quadrupole magnet is situated on the downstream end of the bunch compressor nearest the electron gun.

As the Linac Coherent Light Source (LCLS) takes shape over the next few years, one of the key issues occupying the minds of physicists is controlling the size and shape of the electron pulses used to generate the x-ray laser light.

Optimal operation of the LCLS will require achieving pulses of electrons that are tightly bunched. This will both ensure that the machine operates the way it was designed and give researchers a means of taking data on an extremely short timescale.

During the current shutdown, technicians have been busy installing the first of two hardware systems onto SLAC's linac that will shorten the length of the electron bunches. Called "bunch compressors" or "magnet chicanes," these devices consist of a series of magnets and drift tubes that divert the electrons flowing through the linac along a bent path that travels out away from the accelerator a short distance and then back.

This out-and-back scheme works because each linac beam pulse contains electrons that have slightly different energies, with electrons in the tail of each bunch being given a higher energy than the electrons in the head of the bunch. Electrons with lower energy are bent more by the bending magnets than electrons with higher energy. When the pulse is made to bend out and back, the low-energy electrons in the head of the bunch travel slightly farther than high-energy electrons in the tail, taking slightly longer, allowing the high-energy electrons in the tail to catch up to the head. The result is a more tightly bunched clump of electrons.

The second bunch compressor, scheduled to be installed during the shutdown of 2007, will be quite a bit longer than the one currently being installed. The first compressor, which is about 18 feet long, is situated near the electron gun where the pulses originate. At this point the pulses have only been accelerated slightly. The second compressor, which will be over 65 feet long, will occupy a spot much further down the linac, by which point the beam has been accelerated to a much higher energy. And because electrons with higher energy bend to a lesser degree than low-energy electrons, a longer compressor is needed to shorten the bunches.

Source: by Brad Plummer, SLAC Today

Explore further: Giant virus revealed in 3-D using X-ray laser

add to favorites email to friend print save as pdf

Related Stories

CERN's two-year shutdown drawing to a close

Feb 13, 2015

It's almost two years to the day since the team in the CERN Control Centre switched off the beams in the Large Hadron Collider (LHC) at 7.24am on 14 February 2013, marking the end of the accelerator's first ...

Recommended for you

Scientists provide new data on the nature of dark matter

10 hours ago

Recent research conducted by scientists from the University of Granada sheds light on the nature of dark matter, one of the most important mysteries in physics. As indirect evidence provided by its gravitational ...

Giant virus revealed in 3-D using X-ray laser

14 hours ago

For the first time, researchers have produced a 3-D image revealing part of the inner structure of an intact, infectious virus, using a unique X-ray laser at the Department of Energy's SLAC National Accelerator ...

Magnetic vortices in nanodisks reveal information

15 hours ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Forschungszentrum Jülich (FZJ) together with a colleague at the French Centre National de la Recherche Scientifique (CNRS) in Strasbourg ...

Breakthrough in OLED technology

Mar 02, 2015

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.