New approach helps expand study of living fossils

Nov 17, 2006
Stromatolites
Intertidal mounds in back reef at Highborne Cay, Bahamas. Credit: University of Miami Rosenstiel School of Marine & Atmospheric Science

The origin of life lies in unique ocean reefs, and scientists from the University of Miami's Rosenstiel School of Marine & Atmospheric Science have developed an approach to help investigate them better.

A new article published in the November issue of Geology reveals how Dr. Miriam Andres' stromatolite investigation – the first of its kind – has begun to "fingerprint" ancient microbial pathways, increasing the understanding of how these reef-like structures form and offering a new way to explore the origins of these living records, which are considered to be the core of most living organisms.

Modern marine stromatolites are living examples of one of the earth's oldest and most persistent widespread ecosystems. Although rare today, these layered deposits of calcium carbonate are found in shallow marine seas throughout 3.4 billion-year-old geologic records. Ancient stromatolites represent a mineral record of carbonate chemistry and the evolution of early life.

In the Geology paper, Dr. Andres and colleagues point out that incorrect assumptions have been made in interpreting stromatolite data: phototrophs, or oxygen-producers, were actually dominated by heterotrophs, or oxygen-consumers, in their contribution to stromatolite formation.

"The motivation for this study is that in ancient stromatolites, direct evidence of microbial activity is lacking," Dr. Andres explained. "Stable isotopes have provided a powerful tool to 'fingerprint' microbial pathways and better understand the sedimentary structures we see in the geologic record. Surprisingly, no study to date has documented this process for modern marine stromatolites."

Stromatolites are the oldest known macrofossils, dating back over three billion years. Dominating the fossil record for 80 percent of our planet's history, stromatolites formed massive reefs in this planet's primitive oceans. While stromatolites look much like coral reefs, they are actually formed from living microorganisms, both animal and plant-like. These microorganisms trap and bind sand grains together and/or produce calcium carbonate to form laminated limestone mounds.

"We knew that the stromatolite ecosystem was dominated by photosynthetic cyanobacteria, and expected to see this reflected in a positive carbon isotopic value. However, we saw the exact opposite." Andres said.

"We still don't understand how stromatolites calicify," Dr. Andres said, referring to her research plans. "This information will be key to understanding how organisms form skeletons and when this process – leaving lasting impressions of historical biological data – first began."

Source: University of Miami Rosenstiel School of Marine & Atmospheric Science

Explore further: TRMM Satellite calculates Hurricanes Fay and Gonzalo rainfall

add to favorites email to friend print save as pdf

Related Stories

Seeking life's imprint in shifting desert sand

May 02, 2011

A group of scientists are hunched over, their eyes intently scanning the jumble of rocks on the ground. Every now and then, someone picks one up for closer inspection, turning it over and over again in their ...

Biologists surprised to find parochial bacterial viruses

Mar 04, 2008

Biologists examining ecosystems similar to those that existed on Earth more than 3 billion years ago have made a surprising discovery: Viruses that infect bacteria are sometimes parochial and unrelated to ...

Recommended for you

Tropical Depression 9 forms in Gulf of Mexico

6 hours ago

Tropical Depression Nine formed over the western Bay of Campeche, Gulf of Mexico and is forecast to make a quick landfall on Mexico's Yucatan Peninsula. NOAA's GOES-East Satellite captured the birth of the ...

$58 million effort to study potential new energy source

11 hours ago

A research team led by The University of Texas at Austin has been awarded approximately $58 million to analyze deposits of frozen methane under the Gulf of Mexico that hold enormous potential to increase ...

And now, the volcano forecast

13 hours ago

Scientists are using volcanic gases to understand how volcanoes work, and as the basis of a hazard-warning forecast system.

User comments : 0